Properties

Label 2-690-115.102-c1-0-23
Degree $2$
Conductor $690$
Sign $-0.807 - 0.590i$
Analytic cond. $5.50967$
Root an. cond. $2.34727$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0713 − 0.997i)2-s + (−0.977 + 0.212i)3-s + (−0.989 − 0.142i)4-s + (−0.342 − 2.20i)5-s + (0.142 + 0.989i)6-s + (−0.448 + 0.244i)7-s + (−0.212 + 0.977i)8-s + (0.909 − 0.415i)9-s + (−2.22 + 0.184i)10-s + (−1.95 − 1.69i)11-s + (0.997 − 0.0713i)12-s + (2.14 − 3.92i)13-s + (0.212 + 0.464i)14-s + (0.804 + 2.08i)15-s + (0.959 + 0.281i)16-s + (−0.765 − 0.573i)17-s + ⋯
L(s)  = 1  + (0.0504 − 0.705i)2-s + (−0.564 + 0.122i)3-s + (−0.494 − 0.0711i)4-s + (−0.153 − 0.988i)5-s + (0.0580 + 0.404i)6-s + (−0.169 + 0.0925i)7-s + (−0.0751 + 0.345i)8-s + (0.303 − 0.138i)9-s + (−0.704 + 0.0582i)10-s + (−0.589 − 0.510i)11-s + (0.287 − 0.0205i)12-s + (0.594 − 1.08i)13-s + (0.0566 + 0.124i)14-s + (0.207 + 0.538i)15-s + (0.239 + 0.0704i)16-s + (−0.185 − 0.138i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.807 - 0.590i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.807 - 0.590i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $-0.807 - 0.590i$
Analytic conductor: \(5.50967\)
Root analytic conductor: \(2.34727\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{690} (217, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :1/2),\ -0.807 - 0.590i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.123901 + 0.379393i\)
\(L(\frac12)\) \(\approx\) \(0.123901 + 0.379393i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.0713 + 0.997i)T \)
3 \( 1 + (0.977 - 0.212i)T \)
5 \( 1 + (0.342 + 2.20i)T \)
23 \( 1 + (4.69 - 0.985i)T \)
good7 \( 1 + (0.448 - 0.244i)T + (3.78 - 5.88i)T^{2} \)
11 \( 1 + (1.95 + 1.69i)T + (1.56 + 10.8i)T^{2} \)
13 \( 1 + (-2.14 + 3.92i)T + (-7.02 - 10.9i)T^{2} \)
17 \( 1 + (0.765 + 0.573i)T + (4.78 + 16.3i)T^{2} \)
19 \( 1 + (0.787 - 5.47i)T + (-18.2 - 5.35i)T^{2} \)
29 \( 1 + (9.80 - 1.40i)T + (27.8 - 8.17i)T^{2} \)
31 \( 1 + (1.87 - 1.20i)T + (12.8 - 28.1i)T^{2} \)
37 \( 1 + (-0.879 - 0.327i)T + (27.9 + 24.2i)T^{2} \)
41 \( 1 + (-3.97 + 8.70i)T + (-26.8 - 30.9i)T^{2} \)
43 \( 1 + (-0.200 - 0.920i)T + (-39.1 + 17.8i)T^{2} \)
47 \( 1 + (5.32 + 5.32i)T + 47iT^{2} \)
53 \( 1 + (-1.49 - 2.72i)T + (-28.6 + 44.5i)T^{2} \)
59 \( 1 + (-3.62 - 12.3i)T + (-49.6 + 31.8i)T^{2} \)
61 \( 1 + (2.08 + 3.24i)T + (-25.3 + 55.4i)T^{2} \)
67 \( 1 + (-6.14 - 0.439i)T + (66.3 + 9.53i)T^{2} \)
71 \( 1 + (5.17 + 5.97i)T + (-10.1 + 70.2i)T^{2} \)
73 \( 1 + (1.78 + 2.38i)T + (-20.5 + 70.0i)T^{2} \)
79 \( 1 + (13.7 - 4.02i)T + (66.4 - 42.7i)T^{2} \)
83 \( 1 + (-5.24 + 14.0i)T + (-62.7 - 54.3i)T^{2} \)
89 \( 1 + (1.23 + 0.791i)T + (36.9 + 80.9i)T^{2} \)
97 \( 1 + (2.35 + 6.31i)T + (-73.3 + 63.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14036166448617311240532621729, −9.207770048555970394483000463238, −8.338695681394879872062669130735, −7.58054927589446038188670804254, −5.72732084181541599923860549437, −5.62526807325842346325442592404, −4.25497473673664017610954662702, −3.38455850865976860446303658823, −1.69204986543294533259354361515, −0.21760599602115390523983342195, 2.17580985804656896272405911441, 3.73419367621685994002359123731, 4.67544275038590070327132973185, 5.88891257961378408077278605108, 6.61631459101248387162750023087, 7.26002273508416344728621501311, 8.125398970020975247736142659604, 9.349896588959820637225475297305, 10.05296744248830088364763743315, 11.19508309348692913377937906957

Graph of the $Z$-function along the critical line