Properties

Label 2-690-1.1-c3-0-8
Degree $2$
Conductor $690$
Sign $1$
Analytic cond. $40.7113$
Root an. cond. $6.38054$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·3-s + 4·4-s − 5·5-s − 6·6-s − 16·7-s − 8·8-s + 9·9-s + 10·10-s + 42·11-s + 12·12-s + 44·13-s + 32·14-s − 15·15-s + 16·16-s − 42·17-s − 18·18-s − 52·19-s − 20·20-s − 48·21-s − 84·22-s + 23·23-s − 24·24-s + 25·25-s − 88·26-s + 27·27-s − 64·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.863·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.15·11-s + 0.288·12-s + 0.938·13-s + 0.610·14-s − 0.258·15-s + 1/4·16-s − 0.599·17-s − 0.235·18-s − 0.627·19-s − 0.223·20-s − 0.498·21-s − 0.814·22-s + 0.208·23-s − 0.204·24-s + 1/5·25-s − 0.663·26-s + 0.192·27-s − 0.431·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 690 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(690\)    =    \(2 \cdot 3 \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(40.7113\)
Root analytic conductor: \(6.38054\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 690,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.500299530\)
\(L(\frac12)\) \(\approx\) \(1.500299530\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 - p T \)
5 \( 1 + p T \)
23 \( 1 - p T \)
good7 \( 1 + 16 T + p^{3} T^{2} \)
11 \( 1 - 42 T + p^{3} T^{2} \)
13 \( 1 - 44 T + p^{3} T^{2} \)
17 \( 1 + 42 T + p^{3} T^{2} \)
19 \( 1 + 52 T + p^{3} T^{2} \)
29 \( 1 + 108 T + p^{3} T^{2} \)
31 \( 1 + 160 T + p^{3} T^{2} \)
37 \( 1 - 146 T + p^{3} T^{2} \)
41 \( 1 - 6 T + p^{3} T^{2} \)
43 \( 1 - 302 T + p^{3} T^{2} \)
47 \( 1 - 276 T + p^{3} T^{2} \)
53 \( 1 - 678 T + p^{3} T^{2} \)
59 \( 1 - 312 T + p^{3} T^{2} \)
61 \( 1 - 182 T + p^{3} T^{2} \)
67 \( 1 + 226 T + p^{3} T^{2} \)
71 \( 1 - 726 T + p^{3} T^{2} \)
73 \( 1 - 206 T + p^{3} T^{2} \)
79 \( 1 + 568 T + p^{3} T^{2} \)
83 \( 1 - 492 T + p^{3} T^{2} \)
89 \( 1 + 264 T + p^{3} T^{2} \)
97 \( 1 + 412 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.866329831570272522064242450081, −8.999349578897345608950665241753, −8.676097622311026274282342892075, −7.48625860142900528551034356622, −6.73397208630075670780765238805, −5.92081615470556135363820997471, −4.14213385695162509249914803703, −3.46521693864456222751603728527, −2.14343057278567401281126949387, −0.76758545918901127192967939579, 0.76758545918901127192967939579, 2.14343057278567401281126949387, 3.46521693864456222751603728527, 4.14213385695162509249914803703, 5.92081615470556135363820997471, 6.73397208630075670780765238805, 7.48625860142900528551034356622, 8.676097622311026274282342892075, 8.999349578897345608950665241753, 9.866329831570272522064242450081

Graph of the $Z$-function along the critical line