Properties

Label 2-69-1.1-c5-0-8
Degree $2$
Conductor $69$
Sign $1$
Analytic cond. $11.0664$
Root an. cond. $3.32663$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.56·2-s − 9·3-s + 25.2·4-s + 40.1·5-s − 68.0·6-s + 194.·7-s − 51.1·8-s + 81·9-s + 303.·10-s − 39.1·11-s − 227.·12-s + 705.·13-s + 1.47e3·14-s − 361.·15-s − 1.19e3·16-s + 1.22e3·17-s + 612.·18-s + 1.89e3·19-s + 1.01e3·20-s − 1.75e3·21-s − 296.·22-s + 529·23-s + 460.·24-s − 1.51e3·25-s + 5.33e3·26-s − 729·27-s + 4.91e3·28-s + ⋯
L(s)  = 1  + 1.33·2-s − 0.577·3-s + 0.788·4-s + 0.718·5-s − 0.772·6-s + 1.50·7-s − 0.282·8-s + 0.333·9-s + 0.960·10-s − 0.0976·11-s − 0.455·12-s + 1.15·13-s + 2.01·14-s − 0.414·15-s − 1.16·16-s + 1.02·17-s + 0.445·18-s + 1.20·19-s + 0.566·20-s − 0.868·21-s − 0.130·22-s + 0.208·23-s + 0.163·24-s − 0.484·25-s + 1.54·26-s − 0.192·27-s + 1.18·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(69\)    =    \(3 \cdot 23\)
Sign: $1$
Analytic conductor: \(11.0664\)
Root analytic conductor: \(3.32663\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 69,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.559958055\)
\(L(\frac12)\) \(\approx\) \(3.559958055\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
23 \( 1 - 529T \)
good2 \( 1 - 7.56T + 32T^{2} \)
5 \( 1 - 40.1T + 3.12e3T^{2} \)
7 \( 1 - 194.T + 1.68e4T^{2} \)
11 \( 1 + 39.1T + 1.61e5T^{2} \)
13 \( 1 - 705.T + 3.71e5T^{2} \)
17 \( 1 - 1.22e3T + 1.41e6T^{2} \)
19 \( 1 - 1.89e3T + 2.47e6T^{2} \)
29 \( 1 + 8.57e3T + 2.05e7T^{2} \)
31 \( 1 + 9.58e3T + 2.86e7T^{2} \)
37 \( 1 + 8.14e3T + 6.93e7T^{2} \)
41 \( 1 - 4.83e3T + 1.15e8T^{2} \)
43 \( 1 - 1.06e4T + 1.47e8T^{2} \)
47 \( 1 - 222.T + 2.29e8T^{2} \)
53 \( 1 - 6.57e3T + 4.18e8T^{2} \)
59 \( 1 + 3.07e4T + 7.14e8T^{2} \)
61 \( 1 + 8.69e3T + 8.44e8T^{2} \)
67 \( 1 - 4.83e4T + 1.35e9T^{2} \)
71 \( 1 + 6.02e4T + 1.80e9T^{2} \)
73 \( 1 - 3.06e4T + 2.07e9T^{2} \)
79 \( 1 - 5.02e4T + 3.07e9T^{2} \)
83 \( 1 + 3.56e4T + 3.93e9T^{2} \)
89 \( 1 + 7.76e4T + 5.58e9T^{2} \)
97 \( 1 + 8.30e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.83698754798105922980975526542, −12.80478857988301570765718103827, −11.64086311981606842052669640661, −10.90651170949896953266886678328, −9.225887756471867024363643095451, −7.53110852120424845302532508775, −5.74558271295760522036029094996, −5.29416682557964310641477744424, −3.75287453941230953494761243342, −1.62367241305216175713329889097, 1.62367241305216175713329889097, 3.75287453941230953494761243342, 5.29416682557964310641477744424, 5.74558271295760522036029094996, 7.53110852120424845302532508775, 9.225887756471867024363643095451, 10.90651170949896953266886678328, 11.64086311981606842052669640661, 12.80478857988301570765718103827, 13.83698754798105922980975526542

Graph of the $Z$-function along the critical line