Properties

Label 2-69-1.1-c5-0-17
Degree $2$
Conductor $69$
Sign $-1$
Analytic cond. $11.0664$
Root an. cond. $3.32663$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.50·2-s − 9·3-s + 40.3·4-s − 86.6·5-s − 76.5·6-s − 64.0·7-s + 71.0·8-s + 81·9-s − 737.·10-s − 285.·11-s − 363.·12-s − 307.·13-s − 544.·14-s + 780.·15-s − 686.·16-s + 2.22e3·17-s + 688.·18-s − 1.80e3·19-s − 3.49e3·20-s + 576.·21-s − 2.42e3·22-s − 529·23-s − 639.·24-s + 4.39e3·25-s − 2.61e3·26-s − 729·27-s − 2.58e3·28-s + ⋯
L(s)  = 1  + 1.50·2-s − 0.577·3-s + 1.26·4-s − 1.55·5-s − 0.868·6-s − 0.493·7-s + 0.392·8-s + 0.333·9-s − 2.33·10-s − 0.710·11-s − 0.728·12-s − 0.504·13-s − 0.742·14-s + 0.895·15-s − 0.670·16-s + 1.86·17-s + 0.501·18-s − 1.14·19-s − 1.95·20-s + 0.285·21-s − 1.06·22-s − 0.208·23-s − 0.226·24-s + 1.40·25-s − 0.758·26-s − 0.192·27-s − 0.622·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(69\)    =    \(3 \cdot 23\)
Sign: $-1$
Analytic conductor: \(11.0664\)
Root analytic conductor: \(3.32663\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 69,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 9T \)
23 \( 1 + 529T \)
good2 \( 1 - 8.50T + 32T^{2} \)
5 \( 1 + 86.6T + 3.12e3T^{2} \)
7 \( 1 + 64.0T + 1.68e4T^{2} \)
11 \( 1 + 285.T + 1.61e5T^{2} \)
13 \( 1 + 307.T + 3.71e5T^{2} \)
17 \( 1 - 2.22e3T + 1.41e6T^{2} \)
19 \( 1 + 1.80e3T + 2.47e6T^{2} \)
29 \( 1 + 2.35e3T + 2.05e7T^{2} \)
31 \( 1 - 8.31e3T + 2.86e7T^{2} \)
37 \( 1 + 9.07e3T + 6.93e7T^{2} \)
41 \( 1 - 1.54e3T + 1.15e8T^{2} \)
43 \( 1 + 1.53e4T + 1.47e8T^{2} \)
47 \( 1 - 1.47e4T + 2.29e8T^{2} \)
53 \( 1 + 1.41e4T + 4.18e8T^{2} \)
59 \( 1 - 8.40e3T + 7.14e8T^{2} \)
61 \( 1 - 2.61e4T + 8.44e8T^{2} \)
67 \( 1 + 1.30e4T + 1.35e9T^{2} \)
71 \( 1 - 5.24e4T + 1.80e9T^{2} \)
73 \( 1 + 1.69e4T + 2.07e9T^{2} \)
79 \( 1 + 1.00e5T + 3.07e9T^{2} \)
83 \( 1 + 8.52e4T + 3.93e9T^{2} \)
89 \( 1 + 8.30e4T + 5.58e9T^{2} \)
97 \( 1 - 3.17e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.91117424634476762226056701734, −12.24970046483089594547290846627, −11.53588767485559461505181124363, −10.22248893734734714487959629108, −8.082096600705339305343659983782, −6.85541310429599873619357772477, −5.45138956800723839043256284125, −4.27946264448773410464809790628, −3.14802308510360162417287038197, 0, 3.14802308510360162417287038197, 4.27946264448773410464809790628, 5.45138956800723839043256284125, 6.85541310429599873619357772477, 8.082096600705339305343659983782, 10.22248893734734714487959629108, 11.53588767485559461505181124363, 12.24970046483089594547290846627, 12.91117424634476762226056701734

Graph of the $Z$-function along the critical line