L(s) = 1 | + (−1.88 − 0.663i)2-s + (3.12 + 2.50i)4-s − 0.647i·5-s − 4.63i·7-s + (−4.22 − 6.79i)8-s + (−0.429 + 1.22i)10-s + 14.8·11-s + 22.0i·13-s + (−3.07 + 8.73i)14-s + (3.46 + 15.6i)16-s − 18.9i·17-s + (−1.76 + 18.9i)19-s + (1.61 − 2.01i)20-s + (−28.0 − 9.87i)22-s − 13.7·23-s + ⋯ |
L(s) = 1 | + (−0.943 − 0.331i)2-s + (0.780 + 0.625i)4-s − 0.129i·5-s − 0.661i·7-s + (−0.528 − 0.849i)8-s + (−0.0429 + 0.122i)10-s + 1.35·11-s + 1.69i·13-s + (−0.219 + 0.624i)14-s + (0.216 + 0.976i)16-s − 1.11i·17-s + (−0.0928 + 0.995i)19-s + (0.0809 − 0.100i)20-s + (−1.27 − 0.448i)22-s − 0.596·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.153i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.988 + 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.244963653\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.244963653\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.88 + 0.663i)T \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (1.76 - 18.9i)T \) |
good | 5 | \( 1 + 0.647iT - 25T^{2} \) |
| 7 | \( 1 + 4.63iT - 49T^{2} \) |
| 11 | \( 1 - 14.8T + 121T^{2} \) |
| 13 | \( 1 - 22.0iT - 169T^{2} \) |
| 17 | \( 1 + 18.9iT - 289T^{2} \) |
| 23 | \( 1 + 13.7T + 529T^{2} \) |
| 29 | \( 1 + 21.8T + 841T^{2} \) |
| 31 | \( 1 - 19.3T + 961T^{2} \) |
| 37 | \( 1 + 31.3iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 38.1T + 1.68e3T^{2} \) |
| 43 | \( 1 - 32.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 75.4T + 2.20e3T^{2} \) |
| 53 | \( 1 - 60.7T + 2.80e3T^{2} \) |
| 59 | \( 1 - 113. iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 106.T + 3.72e3T^{2} \) |
| 67 | \( 1 - 25.0T + 4.48e3T^{2} \) |
| 71 | \( 1 + 67.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 99.5T + 5.32e3T^{2} \) |
| 79 | \( 1 - 84.4T + 6.24e3T^{2} \) |
| 83 | \( 1 - 92.6T + 6.88e3T^{2} \) |
| 89 | \( 1 - 120.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 140. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17577177711488317908193776990, −9.206660537802129134574783076267, −8.933635810480170967928515563833, −7.60175773456487714185005145889, −6.94631726255135639866115632944, −6.15583328690335447417397042549, −4.40238579223085912357726917815, −3.63669743207148988232709188488, −2.07020057367331996672854900348, −0.968510844007933616060092426975,
0.828689141176554693243473615090, 2.24320939108738237176086874025, 3.49512201162596994544571965116, 5.13355840673845940171682200222, 6.06615086670400889157844459164, 6.76796803389988900900548753679, 7.86810364306353246240270368266, 8.632051389867572942461114352231, 9.256247321821768342567543614498, 10.28958666958373713527344884989