L(s) = 1 | − 1.43·2-s − 3-s + 0.0731·4-s + 1.43·6-s − 7-s + 2.77·8-s + 9-s + 4.21·11-s − 0.0731·12-s − 13-s + 1.43·14-s − 4.14·16-s + 2.87·17-s − 1.43·18-s − 1.28·19-s + 21-s − 6.06·22-s + 8.02·23-s − 2.77·24-s + 1.43·26-s − 27-s − 0.0731·28-s + 3.28·29-s − 7.04·31-s + 0.413·32-s − 4.21·33-s − 4.14·34-s + ⋯ |
L(s) = 1 | − 1.01·2-s − 0.577·3-s + 0.0365·4-s + 0.587·6-s − 0.377·7-s + 0.980·8-s + 0.333·9-s + 1.27·11-s − 0.0211·12-s − 0.277·13-s + 0.384·14-s − 1.03·16-s + 0.698·17-s − 0.339·18-s − 0.295·19-s + 0.218·21-s − 1.29·22-s + 1.67·23-s − 0.566·24-s + 0.282·26-s − 0.192·27-s − 0.0138·28-s + 0.610·29-s − 1.26·31-s + 0.0731·32-s − 0.733·33-s − 0.711·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 + T \) |
good | 2 | \( 1 + 1.43T + 2T^{2} \) |
| 11 | \( 1 - 4.21T + 11T^{2} \) |
| 17 | \( 1 - 2.87T + 17T^{2} \) |
| 19 | \( 1 + 1.28T + 19T^{2} \) |
| 23 | \( 1 - 8.02T + 23T^{2} \) |
| 29 | \( 1 - 3.28T + 29T^{2} \) |
| 31 | \( 1 + 7.04T + 31T^{2} \) |
| 37 | \( 1 + 8.57T + 37T^{2} \) |
| 41 | \( 1 + 12.0T + 41T^{2} \) |
| 43 | \( 1 + 7.14T + 43T^{2} \) |
| 47 | \( 1 + 1.95T + 47T^{2} \) |
| 53 | \( 1 - 5.14T + 53T^{2} \) |
| 59 | \( 1 + 7.33T + 59T^{2} \) |
| 61 | \( 1 - 7.75T + 61T^{2} \) |
| 67 | \( 1 + 12.0T + 67T^{2} \) |
| 71 | \( 1 - 10.7T + 71T^{2} \) |
| 73 | \( 1 - 8.32T + 73T^{2} \) |
| 79 | \( 1 - 4.47T + 79T^{2} \) |
| 83 | \( 1 - 3.80T + 83T^{2} \) |
| 89 | \( 1 + 5.64T + 89T^{2} \) |
| 97 | \( 1 + 6.90T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.61922524359266656411256607492, −6.77085758848422918390296297614, −6.70795790588095457490542946813, −5.38017444008633640856405664451, −4.94316040221957707449605244437, −3.93905012722121507356486663713, −3.24742665149066906072433469412, −1.80036371757981088065667632756, −1.10019859197329639423926110918, 0,
1.10019859197329639423926110918, 1.80036371757981088065667632756, 3.24742665149066906072433469412, 3.93905012722121507356486663713, 4.94316040221957707449605244437, 5.38017444008633640856405664451, 6.70795790588095457490542946813, 6.77085758848422918390296297614, 7.61922524359266656411256607492