Properties

Label 2-6825-1.1-c1-0-135
Degree $2$
Conductor $6825$
Sign $-1$
Analytic cond. $54.4978$
Root an. cond. $7.38226$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.37·2-s + 3-s + 3.62·4-s − 2.37·6-s − 7-s − 3.85·8-s + 9-s − 4.76·11-s + 3.62·12-s − 13-s + 2.37·14-s + 1.88·16-s + 0.661·17-s − 2.37·18-s − 0.146·19-s − 21-s + 11.3·22-s + 6.70·23-s − 3.85·24-s + 2.37·26-s + 27-s − 3.62·28-s + 4.85·29-s − 8.34·31-s + 3.22·32-s − 4.76·33-s − 1.56·34-s + ⋯
L(s)  = 1  − 1.67·2-s + 0.577·3-s + 1.81·4-s − 0.968·6-s − 0.377·7-s − 1.36·8-s + 0.333·9-s − 1.43·11-s + 1.04·12-s − 0.277·13-s + 0.633·14-s + 0.472·16-s + 0.160·17-s − 0.559·18-s − 0.0335·19-s − 0.218·21-s + 2.41·22-s + 1.39·23-s − 0.786·24-s + 0.465·26-s + 0.192·27-s − 0.685·28-s + 0.901·29-s − 1.49·31-s + 0.570·32-s − 0.829·33-s − 0.268·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6825\)    =    \(3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(54.4978\)
Root analytic conductor: \(7.38226\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6825,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good2 \( 1 + 2.37T + 2T^{2} \)
11 \( 1 + 4.76T + 11T^{2} \)
17 \( 1 - 0.661T + 17T^{2} \)
19 \( 1 + 0.146T + 19T^{2} \)
23 \( 1 - 6.70T + 23T^{2} \)
29 \( 1 - 4.85T + 29T^{2} \)
31 \( 1 + 8.34T + 31T^{2} \)
37 \( 1 + 1.21T + 37T^{2} \)
41 \( 1 + 5.84T + 41T^{2} \)
43 \( 1 + 2.39T + 43T^{2} \)
47 \( 1 - 2.73T + 47T^{2} \)
53 \( 1 - 11.8T + 53T^{2} \)
59 \( 1 - 0.420T + 59T^{2} \)
61 \( 1 - 5.06T + 61T^{2} \)
67 \( 1 - 9.64T + 67T^{2} \)
71 \( 1 - 10.7T + 71T^{2} \)
73 \( 1 + 0.0279T + 73T^{2} \)
79 \( 1 + 8.81T + 79T^{2} \)
83 \( 1 - 0.984T + 83T^{2} \)
89 \( 1 + 3.03T + 89T^{2} \)
97 \( 1 + 11.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79311669396783276555060116962, −7.11972150593996699697566842721, −6.77985801421423099902633214482, −5.57114051543409385001895505400, −4.90661844530449136250253520917, −3.64562669031886076832869304802, −2.74901876437424105001926223920, −2.22398210855133496523612312391, −1.08933024369710836498534256485, 0, 1.08933024369710836498534256485, 2.22398210855133496523612312391, 2.74901876437424105001926223920, 3.64562669031886076832869304802, 4.90661844530449136250253520917, 5.57114051543409385001895505400, 6.77985801421423099902633214482, 7.11972150593996699697566842721, 7.79311669396783276555060116962

Graph of the $Z$-function along the critical line