Properties

Label 2-6825-1.1-c1-0-13
Degree $2$
Conductor $6825$
Sign $1$
Analytic cond. $54.4978$
Root an. cond. $7.38226$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61·2-s − 3-s + 0.618·4-s − 1.61·6-s − 7-s − 2.23·8-s + 9-s − 4.80·11-s − 0.618·12-s − 13-s − 1.61·14-s − 4.85·16-s − 3.24·17-s + 1.61·18-s − 0.891·19-s + 21-s − 7.77·22-s − 1.41·23-s + 2.23·24-s − 1.61·26-s − 27-s − 0.618·28-s + 0.459·29-s + 0.340·31-s − 3.38·32-s + 4.80·33-s − 5.25·34-s + ⋯
L(s)  = 1  + 1.14·2-s − 0.577·3-s + 0.309·4-s − 0.660·6-s − 0.377·7-s − 0.790·8-s + 0.333·9-s − 1.44·11-s − 0.178·12-s − 0.277·13-s − 0.432·14-s − 1.21·16-s − 0.787·17-s + 0.381·18-s − 0.204·19-s + 0.218·21-s − 1.65·22-s − 0.294·23-s + 0.456·24-s − 0.317·26-s − 0.192·27-s − 0.116·28-s + 0.0853·29-s + 0.0611·31-s − 0.597·32-s + 0.836·33-s − 0.900·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6825\)    =    \(3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(54.4978\)
Root analytic conductor: \(7.38226\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6825,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.306380945\)
\(L(\frac12)\) \(\approx\) \(1.306380945\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good2 \( 1 - 1.61T + 2T^{2} \)
11 \( 1 + 4.80T + 11T^{2} \)
17 \( 1 + 3.24T + 17T^{2} \)
19 \( 1 + 0.891T + 19T^{2} \)
23 \( 1 + 1.41T + 23T^{2} \)
29 \( 1 - 0.459T + 29T^{2} \)
31 \( 1 - 0.340T + 31T^{2} \)
37 \( 1 - 1.71T + 37T^{2} \)
41 \( 1 + 3.07T + 41T^{2} \)
43 \( 1 - 11.8T + 43T^{2} \)
47 \( 1 - 4.50T + 47T^{2} \)
53 \( 1 - 0.405T + 53T^{2} \)
59 \( 1 - 8.94T + 59T^{2} \)
61 \( 1 + 10.3T + 61T^{2} \)
67 \( 1 + 8.24T + 67T^{2} \)
71 \( 1 - 7.57T + 71T^{2} \)
73 \( 1 + 2.48T + 73T^{2} \)
79 \( 1 + 9.07T + 79T^{2} \)
83 \( 1 - 3.83T + 83T^{2} \)
89 \( 1 - 15.2T + 89T^{2} \)
97 \( 1 - 10.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74462777689971082455414463372, −7.10915997949955460392440260353, −6.21375563216427275777189307013, −5.81519032203386797208170314690, −5.03706162329560723232659510088, −4.54277073799381581772794460793, −3.77720038212870484144114248507, −2.82889362995771543324737867077, −2.20804211714064584970428923858, −0.47403569632589382266361033011, 0.47403569632589382266361033011, 2.20804211714064584970428923858, 2.82889362995771543324737867077, 3.77720038212870484144114248507, 4.54277073799381581772794460793, 5.03706162329560723232659510088, 5.81519032203386797208170314690, 6.21375563216427275777189307013, 7.10915997949955460392440260353, 7.74462777689971082455414463372

Graph of the $Z$-function along the critical line