L(s) = 1 | + (−0.0976 − 1.41i)2-s − 0.700·3-s + (−1.98 + 0.275i)4-s + 5-s + (0.0683 + 0.987i)6-s + 0.472i·7-s + (0.582 + 2.76i)8-s − 2.50·9-s + (−0.0976 − 1.41i)10-s + 3.76·11-s + (1.38 − 0.192i)12-s + 2.08i·13-s + (0.666 − 0.0461i)14-s − 0.700·15-s + (3.84 − 1.09i)16-s + (3.62 − 1.96i)17-s + ⋯ |
L(s) = 1 | + (−0.0690 − 0.997i)2-s − 0.404·3-s + (−0.990 + 0.137i)4-s + 0.447·5-s + (0.0279 + 0.403i)6-s + 0.178i·7-s + (0.205 + 0.978i)8-s − 0.836·9-s + (−0.0308 − 0.446i)10-s + 1.13·11-s + (0.400 − 0.0556i)12-s + 0.578i·13-s + (0.178 − 0.0123i)14-s − 0.180·15-s + (0.962 − 0.272i)16-s + (0.878 − 0.477i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.648 + 0.761i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.648 + 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11941 - 0.517250i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11941 - 0.517250i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0976 + 1.41i)T \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 + (-3.62 + 1.96i)T \) |
good | 3 | \( 1 + 0.700T + 3T^{2} \) |
| 7 | \( 1 - 0.472iT - 7T^{2} \) |
| 11 | \( 1 - 3.76T + 11T^{2} \) |
| 13 | \( 1 - 2.08iT - 13T^{2} \) |
| 19 | \( 1 - 4.24iT - 19T^{2} \) |
| 23 | \( 1 + 3.04iT - 23T^{2} \) |
| 29 | \( 1 - 8.44T + 29T^{2} \) |
| 31 | \( 1 - 1.89iT - 31T^{2} \) |
| 37 | \( 1 - 4.90T + 37T^{2} \) |
| 41 | \( 1 + 10.3iT - 41T^{2} \) |
| 43 | \( 1 - 8.18iT - 43T^{2} \) |
| 47 | \( 1 + 5.56T + 47T^{2} \) |
| 53 | \( 1 + 6.11iT - 53T^{2} \) |
| 59 | \( 1 - 5.25iT - 59T^{2} \) |
| 61 | \( 1 - 4.08T + 61T^{2} \) |
| 67 | \( 1 + 14.0iT - 67T^{2} \) |
| 71 | \( 1 - 14.4iT - 71T^{2} \) |
| 73 | \( 1 + 11.7iT - 73T^{2} \) |
| 79 | \( 1 - 14.2iT - 79T^{2} \) |
| 83 | \( 1 + 1.62iT - 83T^{2} \) |
| 89 | \( 1 - 4.13T + 89T^{2} \) |
| 97 | \( 1 - 1.51iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.41346904576042203446779244688, −9.637652148187153475963211256711, −8.878638095763810295505797006408, −8.100207756279724459182056412786, −6.61791298286122530737707925600, −5.74599930823346573951520653174, −4.77428225815414443889302573969, −3.63316532591209486568052488692, −2.48824287346367331534487878398, −1.10395103116556398355373740413,
0.970454527534283414718490971525, 3.12845114393485068055028037996, 4.42249102587987894724960568012, 5.45169800984947661229780884299, 6.14536121560195538556739163605, 6.89433699724591045292795547561, 8.002095987186155226515023058948, 8.773280833815858354694090273878, 9.611627672253143434560938781917, 10.39979554760637143358597306859