L(s) = 1 | + (1.38 + 0.303i)2-s − 0.228·3-s + (1.81 + 0.838i)4-s − 5-s + (−0.316 − 0.0694i)6-s + 3.99i·7-s + (2.25 + 1.70i)8-s − 2.94·9-s + (−1.38 − 0.303i)10-s − 3.75·11-s + (−0.415 − 0.191i)12-s + 3.12i·13-s + (−1.21 + 5.51i)14-s + 0.228·15-s + (2.59 + 3.04i)16-s + (3.25 + 2.53i)17-s + ⋯ |
L(s) = 1 | + (0.976 + 0.214i)2-s − 0.132·3-s + (0.907 + 0.419i)4-s − 0.447·5-s + (−0.129 − 0.0283i)6-s + 1.50i·7-s + (0.796 + 0.604i)8-s − 0.982·9-s + (−0.436 − 0.0959i)10-s − 1.13·11-s + (−0.119 − 0.0553i)12-s + 0.865i·13-s + (−0.323 + 1.47i)14-s + 0.0590·15-s + (0.648 + 0.760i)16-s + (0.788 + 0.614i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.257 - 0.966i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.257 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24197 + 1.61652i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24197 + 1.61652i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.38 - 0.303i)T \) |
| 5 | \( 1 + T \) |
| 17 | \( 1 + (-3.25 - 2.53i)T \) |
good | 3 | \( 1 + 0.228T + 3T^{2} \) |
| 7 | \( 1 - 3.99iT - 7T^{2} \) |
| 11 | \( 1 + 3.75T + 11T^{2} \) |
| 13 | \( 1 - 3.12iT - 13T^{2} \) |
| 19 | \( 1 + 1.96iT - 19T^{2} \) |
| 23 | \( 1 + 0.990iT - 23T^{2} \) |
| 29 | \( 1 - 4.34T + 29T^{2} \) |
| 31 | \( 1 + 2.33iT - 31T^{2} \) |
| 37 | \( 1 - 6.42T + 37T^{2} \) |
| 41 | \( 1 + 5.65iT - 41T^{2} \) |
| 43 | \( 1 - 3.10iT - 43T^{2} \) |
| 47 | \( 1 + 0.730T + 47T^{2} \) |
| 53 | \( 1 + 10.5iT - 53T^{2} \) |
| 59 | \( 1 - 14.8iT - 59T^{2} \) |
| 61 | \( 1 - 8.99T + 61T^{2} \) |
| 67 | \( 1 - 7.33iT - 67T^{2} \) |
| 71 | \( 1 - 0.713iT - 71T^{2} \) |
| 73 | \( 1 - 7.10iT - 73T^{2} \) |
| 79 | \( 1 - 8.64iT - 79T^{2} \) |
| 83 | \( 1 + 11.2iT - 83T^{2} \) |
| 89 | \( 1 + 16.0T + 89T^{2} \) |
| 97 | \( 1 + 18.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.20083450132914658948743923874, −10.01341556543399704436314788924, −8.639971566293649109435275970674, −8.216778411632741343413531275082, −7.05777381267310745540574544860, −5.91043830064054175459850295967, −5.48082074991995830617119006263, −4.42674358017971705910944356431, −3.03957376536855214873713353495, −2.32295851581813319485586249730,
0.78588242380956968744545365721, 2.80648253634725720992555385879, 3.55982761799826968376230125104, 4.74245638585743837415719616548, 5.48964344207475382069748359729, 6.56396200204971326319036860887, 7.67859960749878350501874452400, 8.004310382319274713485050431743, 9.794620598931472626295954182167, 10.56478009492723011520622720288