L(s) = 1 | + (0.816 + 1.41i)2-s + (−0.334 + 0.579i)4-s + (−0.252 − 0.437i)7-s + 2.17·8-s + (1.55 + 2.68i)11-s + (3.11 − 5.40i)13-s + (0.412 − 0.714i)14-s + (2.44 + 4.23i)16-s + 6.10·17-s − 5.57·19-s + (−2.53 + 4.38i)22-s + (−1.91 + 3.31i)23-s + 10.1·26-s + 0.338·28-s + (1.22 + 2.12i)29-s + ⋯ |
L(s) = 1 | + (0.577 + 1.00i)2-s + (−0.167 + 0.289i)4-s + (−0.0955 − 0.165i)7-s + 0.768·8-s + (0.467 + 0.809i)11-s + (0.865 − 1.49i)13-s + (0.110 − 0.191i)14-s + (0.611 + 1.05i)16-s + 1.47·17-s − 1.27·19-s + (−0.539 + 0.935i)22-s + (−0.398 + 0.690i)23-s + 1.99·26-s + 0.0638·28-s + (0.228 + 0.395i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.468 - 0.883i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.468 - 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.99155 + 1.19879i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.99155 + 1.19879i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.816 - 1.41i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (0.252 + 0.437i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.55 - 2.68i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.11 + 5.40i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 6.10T + 17T^{2} \) |
| 19 | \( 1 + 5.57T + 19T^{2} \) |
| 23 | \( 1 + (1.91 - 3.31i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.22 - 2.12i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.11 - 3.66i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6.72T + 37T^{2} \) |
| 41 | \( 1 + (2.72 - 4.71i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.663 + 1.14i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.85 + 3.21i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 2.54T + 53T^{2} \) |
| 59 | \( 1 + (-1.44 + 2.49i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.42 - 2.46i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.20 - 2.08i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.54T + 71T^{2} \) |
| 73 | \( 1 + 11.7T + 73T^{2} \) |
| 79 | \( 1 + (1.70 + 2.94i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.95 + 12.0i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 3.38T + 89T^{2} \) |
| 97 | \( 1 + (5.53 + 9.59i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40770637264283679048926699902, −10.02012990002224084598284388083, −8.586669989319196956243284933142, −7.82325540759096991463163607376, −7.04550507345666796315112316615, −6.07180706138693132297772013820, −5.44607406712571464562750122742, −4.35700334228156191177975374346, −3.32415437551241882489602903441, −1.45397331447750814175227502396,
1.37835583599496737815986596781, 2.59822715710740763693091224356, 3.79120314296459164973731016058, 4.34797542282241678296371789210, 5.79616205720603944134846743175, 6.60145517430993275414912354410, 7.85252629486288838242300608392, 8.728016950908111940613932153422, 9.677923314062159304818355341391, 10.64959005855794997286613412941