L(s) = 1 | + (−0.736 − 1.27i)2-s + (−0.0852 + 0.147i)4-s + (1.93 + 3.34i)7-s − 2.69·8-s + (0.130 + 0.225i)11-s + (−2.03 + 3.53i)13-s + (2.84 − 4.93i)14-s + (2.15 + 3.73i)16-s + 3.26·17-s + 4.24·19-s + (0.191 − 0.332i)22-s + (−4.34 + 7.53i)23-s + 6.00·26-s − 0.659·28-s + (2.11 + 3.65i)29-s + ⋯ |
L(s) = 1 | + (−0.520 − 0.902i)2-s + (−0.0426 + 0.0738i)4-s + (0.730 + 1.26i)7-s − 0.952·8-s + (0.0392 + 0.0679i)11-s + (−0.565 + 0.979i)13-s + (0.761 − 1.31i)14-s + (0.538 + 0.933i)16-s + 0.790·17-s + 0.974·19-s + (0.0408 − 0.0708i)22-s + (−0.906 + 1.57i)23-s + 1.17·26-s − 0.124·28-s + (0.392 + 0.678i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0290i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13012 - 0.0164065i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13012 - 0.0164065i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (0.736 + 1.27i)T + (-1 + 1.73i)T^{2} \) |
| 7 | \( 1 + (-1.93 - 3.34i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.130 - 0.225i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.03 - 3.53i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 3.26T + 17T^{2} \) |
| 19 | \( 1 - 4.24T + 19T^{2} \) |
| 23 | \( 1 + (4.34 - 7.53i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.11 - 3.65i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.32 - 2.29i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2.27T + 37T^{2} \) |
| 41 | \( 1 + (-2.82 + 4.88i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.53 + 7.85i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.714 - 1.23i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 11.3T + 53T^{2} \) |
| 59 | \( 1 + (3.56 - 6.16i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.26 + 2.18i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.64 + 9.77i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.38T + 71T^{2} \) |
| 73 | \( 1 + 0.403T + 73T^{2} \) |
| 79 | \( 1 + (-1.52 - 2.63i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.29 + 3.96i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 7.17T + 89T^{2} \) |
| 97 | \( 1 + (-1.55 - 2.69i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48491197786206699942295071953, −9.555360037845783584835422524362, −9.116854396614166909910550509426, −8.155967134474683375486981463801, −7.09616074240583852579511718686, −5.77004675810904433297161822468, −5.18708536622883025262239400577, −3.59100762900733806563108325083, −2.38021449095739538253880278496, −1.50793206761887389993996670212,
0.76114127874463738391218017558, 2.78990631505765155350396978147, 4.06406061164483134410964251451, 5.21898523657193234738475139457, 6.24797617808382680421805541817, 7.23845298445667041183423705519, 7.889145856122304893464464939883, 8.308468620833779506700511668232, 9.705088349591845247964037310053, 10.22611550803475971545591553828