L(s) = 1 | − 2.12i·2-s + 3.47·4-s − 30.7i·7-s − 24.4i·8-s + 50.1·11-s − 15.9i·13-s − 65.2·14-s − 24.0·16-s − 105. i·17-s + 21.3·19-s − 106. i·22-s + 136. i·23-s − 33.9·26-s − 106. i·28-s + 224.·29-s + ⋯ |
L(s) = 1 | − 0.751i·2-s + 0.434·4-s − 1.65i·7-s − 1.07i·8-s + 1.37·11-s − 0.340i·13-s − 1.24·14-s − 0.375·16-s − 1.50i·17-s + 0.257·19-s − 1.03i·22-s + 1.23i·23-s − 0.255·26-s − 0.720i·28-s + 1.43·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.506937951\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.506937951\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + 2.12iT - 8T^{2} \) |
| 7 | \( 1 + 30.7iT - 343T^{2} \) |
| 11 | \( 1 - 50.1T + 1.33e3T^{2} \) |
| 13 | \( 1 + 15.9iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 105. iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 21.3T + 6.85e3T^{2} \) |
| 23 | \( 1 - 136. iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 224.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 225.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 416. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 76.1T + 6.89e4T^{2} \) |
| 43 | \( 1 - 31.7iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 60.8iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 466. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 95.4T + 2.05e5T^{2} \) |
| 61 | \( 1 + 357.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 87.8iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 412.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 331. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 248.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 552. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 291.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 198. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.897604011548399245965494538967, −9.257141748036966567928332274900, −7.77025023345869879189363938765, −7.05348011539651302866322834037, −6.44723345872744177239921981291, −4.87136103419188486907960287166, −3.80462684146270974992960793031, −3.11443642796747224789452551097, −1.49515164926447225204229737772, −0.72051974713804041412184733083,
1.67466663559137733344811168422, 2.62355865962679078980611210546, 4.07085471921563623218222317302, 5.39316382378083743076235224012, 6.16441824988116594473007922306, 6.65945325298819485831993444231, 7.88128987362354710256959391132, 8.781839192474839391959795296788, 9.152157450056590178978807263527, 10.57491623442613981222060015002