Properties

Label 2-675-3.2-c4-0-83
Degree $2$
Conductor $675$
Sign $i$
Analytic cond. $69.7747$
Root an. cond. $8.35312$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3i·2-s + 7·4-s + 19·7-s + 69i·8-s + 123i·11-s − 302·13-s + 57i·14-s − 95·16-s − 414i·17-s − 304·19-s − 369·22-s − 300i·23-s − 906i·26-s + 133·28-s − 678i·29-s + ⋯
L(s)  = 1  + 0.750i·2-s + 0.437·4-s + 0.387·7-s + 1.07i·8-s + 1.01i·11-s − 1.78·13-s + 0.290i·14-s − 0.371·16-s − 1.43i·17-s − 0.842·19-s − 0.762·22-s − 0.567i·23-s − 1.34i·26-s + 0.169·28-s − 0.806i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $i$
Analytic conductor: \(69.7747\)
Root analytic conductor: \(8.35312\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{675} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :2),\ i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.4163601347\)
\(L(\frac12)\) \(\approx\) \(0.4163601347\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 3iT - 16T^{2} \)
7 \( 1 - 19T + 2.40e3T^{2} \)
11 \( 1 - 123iT - 1.46e4T^{2} \)
13 \( 1 + 302T + 2.85e4T^{2} \)
17 \( 1 + 414iT - 8.35e4T^{2} \)
19 \( 1 + 304T + 1.30e5T^{2} \)
23 \( 1 + 300iT - 2.79e5T^{2} \)
29 \( 1 + 678iT - 7.07e5T^{2} \)
31 \( 1 - 239T + 9.23e5T^{2} \)
37 \( 1 + 740T + 1.87e6T^{2} \)
41 \( 1 - 228iT - 2.82e6T^{2} \)
43 \( 1 - 982T + 3.41e6T^{2} \)
47 \( 1 + 2.16e3iT - 4.87e6T^{2} \)
53 \( 1 - 1.59e3iT - 7.89e6T^{2} \)
59 \( 1 + 2.92e3iT - 1.21e7T^{2} \)
61 \( 1 + 316T + 1.38e7T^{2} \)
67 \( 1 + 4.62e3T + 2.01e7T^{2} \)
71 \( 1 - 1.81e3iT - 2.54e7T^{2} \)
73 \( 1 - 3.03e3T + 2.83e7T^{2} \)
79 \( 1 + 1.04e4T + 3.89e7T^{2} \)
83 \( 1 + 1.26e4iT - 4.74e7T^{2} \)
89 \( 1 + 7.00e3iT - 6.27e7T^{2} \)
97 \( 1 - 6.51e3T + 8.85e7T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.711485517390404764605987718302, −8.669605622272984441902298112740, −7.55916340705810786071078422778, −7.24272859380829228357702367652, −6.29766966208342011928887389922, −5.06360277203457127580262004644, −4.58784648441129389211185883849, −2.69874635836611166621195919719, −1.99794431432741087962938408326, −0.087575257378152819027457939941, 1.35428194835009892613267935815, 2.34683780288721629468747773724, 3.34722614431845558024134152068, 4.42229016095445448300655023326, 5.63683331087479469110952731380, 6.59710864178066065721455071423, 7.53716008476026591427285031340, 8.429705711514847704548628495144, 9.476326428293756090771939041415, 10.39038210330829854703644816778

Graph of the $Z$-function along the critical line