L(s) = 1 | + (−0.826 − 0.300i)2-s + (0.592 + 1.62i)3-s + (−0.939 − 0.788i)4-s − 1.52i·6-s + (−2.87 + 2.41i)7-s + (1.41 + 2.45i)8-s + (−2.29 + 1.92i)9-s + (−0.180 − 1.02i)11-s + (0.726 − 1.99i)12-s + (2.99 − 1.08i)13-s + (3.10 − 1.13i)14-s + (−0.00727 − 0.0412i)16-s + (−0.233 + 0.405i)17-s + (2.47 − 0.902i)18-s + (−2.34 − 4.06i)19-s + ⋯ |
L(s) = 1 | + (−0.584 − 0.212i)2-s + (0.342 + 0.939i)3-s + (−0.469 − 0.394i)4-s − 0.621i·6-s + (−1.08 + 0.913i)7-s + (0.501 + 0.868i)8-s + (−0.766 + 0.642i)9-s + (−0.0545 − 0.309i)11-s + (0.209 − 0.576i)12-s + (0.830 − 0.302i)13-s + (0.830 − 0.302i)14-s + (−0.00181 − 0.0103i)16-s + (−0.0567 + 0.0982i)17-s + (0.584 − 0.212i)18-s + (−0.538 − 0.932i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(−0.835+0.549i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(−0.835+0.549i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
−0.835+0.549i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(301,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 675, ( :1/2), −0.835+0.549i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.592−1.62i)T |
| 5 | 1 |
good | 2 | 1+(0.826+0.300i)T+(1.53+1.28i)T2 |
| 7 | 1+(2.87−2.41i)T+(1.21−6.89i)T2 |
| 11 | 1+(0.180+1.02i)T+(−10.3+3.76i)T2 |
| 13 | 1+(−2.99+1.08i)T+(9.95−8.35i)T2 |
| 17 | 1+(0.233−0.405i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2.34+4.06i)T+(−9.5+16.4i)T2 |
| 23 | 1+(4.11+3.45i)T+(3.99+22.6i)T2 |
| 29 | 1+(5.45+1.98i)T+(22.2+18.6i)T2 |
| 31 | 1+(3.14+2.63i)T+(5.38+30.5i)T2 |
| 37 | 1+(−2.23+3.87i)T+(−18.5−32.0i)T2 |
| 41 | 1+(7.52−2.73i)T+(31.4−26.3i)T2 |
| 43 | 1+(−2.11−11.9i)T+(−40.4+14.7i)T2 |
| 47 | 1+(2.65−2.22i)T+(8.16−46.2i)T2 |
| 53 | 1+8.83T+53T2 |
| 59 | 1+(−2.36+13.4i)T+(−55.4−20.1i)T2 |
| 61 | 1+(−7.46+6.26i)T+(10.5−60.0i)T2 |
| 67 | 1+(1.71−0.623i)T+(51.3−43.0i)T2 |
| 71 | 1+(3.85−6.67i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−0.407−0.705i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−3.81−1.38i)T+(60.5+50.7i)T2 |
| 83 | 1+(15.9+5.81i)T+(63.5+53.3i)T2 |
| 89 | 1+(−5.19−9.00i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−1.06−6.02i)T+(−91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.771254242509671863606291340351, −9.508230002400118159576195474376, −8.630962218181661175103712127717, −8.086805866626885886496061631208, −6.30494894614235658450182959236, −5.63749118667051617947863283401, −4.53955848223434342618902710574, −3.41501094099480271649277250043, −2.26685790394321552586355868351, 0,
1.57965517537069703265762732360, 3.41549439983230138481795264119, 3.97683593028085985336245776085, 5.78946081438974505556396900205, 6.83246891799800147289380519979, 7.32298780234918389023675800660, 8.244974253932667295273491889207, 8.979493290676816420947654172167, 9.815242838639603366258973141456