L(s) = 1 | + (1.02 − 0.860i)2-s + (0.817 + 1.52i)3-s + (−0.0359 + 0.204i)4-s + (2.15 + 0.862i)6-s + (0.0601 + 0.340i)7-s + (1.47 + 2.55i)8-s + (−1.66 + 2.49i)9-s + (−0.377 − 0.137i)11-s + (−0.341 + 0.111i)12-s + (−0.575 − 0.483i)13-s + (0.355 + 0.297i)14-s + (3.32 + 1.21i)16-s + (0.670 − 1.16i)17-s + (0.442 + 3.99i)18-s + (1.87 + 3.24i)19-s + ⋯ |
L(s) = 1 | + (0.725 − 0.608i)2-s + (0.471 + 0.881i)3-s + (−0.0179 + 0.102i)4-s + (0.878 + 0.352i)6-s + (0.0227 + 0.128i)7-s + (0.522 + 0.904i)8-s + (−0.554 + 0.832i)9-s + (−0.113 − 0.0414i)11-s + (−0.0984 + 0.0323i)12-s + (−0.159 − 0.133i)13-s + (0.0948 + 0.0796i)14-s + (0.832 + 0.302i)16-s + (0.162 − 0.281i)17-s + (0.104 + 0.940i)18-s + (0.429 + 0.744i)19-s + ⋯ |
Λ(s)=(=(675s/2ΓC(s)L(s)(0.532−0.846i)Λ(2−s)
Λ(s)=(=(675s/2ΓC(s+1/2)L(s)(0.532−0.846i)Λ(1−s)
Degree: |
2 |
Conductor: |
675
= 33⋅52
|
Sign: |
0.532−0.846i
|
Analytic conductor: |
5.38990 |
Root analytic conductor: |
2.32161 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ675(76,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 675, ( :1/2), 0.532−0.846i)
|
Particular Values
L(1) |
≈ |
2.13173+1.17740i |
L(21) |
≈ |
2.13173+1.17740i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.817−1.52i)T |
| 5 | 1 |
good | 2 | 1+(−1.02+0.860i)T+(0.347−1.96i)T2 |
| 7 | 1+(−0.0601−0.340i)T+(−6.57+2.39i)T2 |
| 11 | 1+(0.377+0.137i)T+(8.42+7.07i)T2 |
| 13 | 1+(0.575+0.483i)T+(2.25+12.8i)T2 |
| 17 | 1+(−0.670+1.16i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.87−3.24i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.536−3.04i)T+(−21.6−7.86i)T2 |
| 29 | 1+(−3.79+3.18i)T+(5.03−28.5i)T2 |
| 31 | 1+(0.774−4.39i)T+(−29.1−10.6i)T2 |
| 37 | 1+(−1.25+2.16i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−1.73−1.45i)T+(7.11+40.3i)T2 |
| 43 | 1+(8.03+2.92i)T+(32.9+27.6i)T2 |
| 47 | 1+(2.13+12.1i)T+(−44.1+16.0i)T2 |
| 53 | 1−10.1T+53T2 |
| 59 | 1+(−12.7+4.64i)T+(45.1−37.9i)T2 |
| 61 | 1+(−2.31−13.1i)T+(−57.3+20.8i)T2 |
| 67 | 1+(9.40+7.89i)T+(11.6+65.9i)T2 |
| 71 | 1+(1.14−1.98i)T+(−35.5−61.4i)T2 |
| 73 | 1+(6.23+10.8i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−9.11+7.64i)T+(13.7−77.7i)T2 |
| 83 | 1+(−3.71+3.11i)T+(14.4−81.7i)T2 |
| 89 | 1+(0.197+0.341i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−13.9−5.07i)T+(74.3+62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53898735963651999036162144577, −10.06339899104003695592990151405, −8.913684471919943670396581290230, −8.205085294431949057596639781252, −7.30352325256182788303050322806, −5.64743458532233604246053713054, −4.96359386071825799315445755358, −3.91853340170749070122896833616, −3.20270766564082093720628363547, −2.12599159912207851973369320870,
1.05491623349453128584434891938, 2.60199679454719406380133663904, 3.89763003808994751971578013375, 4.99142798520199354980952317442, 6.00838462334615200360175050166, 6.77522060470762273242906885647, 7.46615187096169703349550078335, 8.416240964278201662794907987073, 9.404947062562740564403581215558, 10.28624659272796074190820862780