Properties

Label 2-675-27.16-c1-0-6
Degree $2$
Conductor $675$
Sign $0.823 - 0.567i$
Analytic cond. $5.38990$
Root an. cond. $2.32161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.55 − 1.30i)2-s + (−1.45 + 0.933i)3-s + (0.364 + 2.06i)4-s + (3.47 + 0.449i)6-s + (0.0652 − 0.370i)7-s + (0.101 − 0.176i)8-s + (1.25 − 2.72i)9-s + (0.272 − 0.0993i)11-s + (−2.46 − 2.67i)12-s + (−0.677 + 0.568i)13-s + (−0.583 + 0.489i)14-s + (3.56 − 1.29i)16-s + (−2.32 − 4.02i)17-s + (−5.49 + 2.59i)18-s + (−1.75 + 3.03i)19-s + ⋯
L(s)  = 1  + (−1.09 − 0.920i)2-s + (−0.842 + 0.539i)3-s + (0.182 + 1.03i)4-s + (1.42 + 0.183i)6-s + (0.0246 − 0.139i)7-s + (0.0359 − 0.0622i)8-s + (0.418 − 0.908i)9-s + (0.0823 − 0.0299i)11-s + (−0.711 − 0.772i)12-s + (−0.187 + 0.157i)13-s + (−0.155 + 0.130i)14-s + (0.890 − 0.323i)16-s + (−0.563 − 0.976i)17-s + (−1.29 + 0.611i)18-s + (−0.401 + 0.695i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.823 - 0.567i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.823 - 0.567i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $0.823 - 0.567i$
Analytic conductor: \(5.38990\)
Root analytic conductor: \(2.32161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{675} (151, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :1/2),\ 0.823 - 0.567i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.394311 + 0.122648i\)
\(L(\frac12)\) \(\approx\) \(0.394311 + 0.122648i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.45 - 0.933i)T \)
5 \( 1 \)
good2 \( 1 + (1.55 + 1.30i)T + (0.347 + 1.96i)T^{2} \)
7 \( 1 + (-0.0652 + 0.370i)T + (-6.57 - 2.39i)T^{2} \)
11 \( 1 + (-0.272 + 0.0993i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (0.677 - 0.568i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (2.32 + 4.02i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (1.75 - 3.03i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.0948 + 0.537i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (4.65 + 3.90i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-0.953 - 5.40i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 + (-5.47 - 9.48i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (7.28 - 6.11i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (-9.54 + 3.47i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (1.09 - 6.23i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 12.2T + 53T^{2} \)
59 \( 1 + (1.18 + 0.432i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-0.499 + 2.83i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (6.78 - 5.69i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (-5.36 - 9.29i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-0.389 + 0.674i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-5.29 - 4.44i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (-6.88 - 5.77i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (3.11 - 5.38i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (13.1 - 4.79i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.52234951230043697248086287750, −9.840348990206574738996116196091, −9.226106606382658666032147561194, −8.307348021549343635640449966776, −7.18903475470814063319667309335, −6.11605379437881612844838642962, −5.03648770069329825986481605031, −3.93175024733546852305157035703, −2.58850330367260435836384117536, −1.06478601189250422284587249680, 0.43064993584842492855702380591, 2.04657489386767476428695165647, 4.07096316557271757081150308469, 5.47857956746317986793217944165, 6.15437056767203770731245203560, 7.05482091456594307084002682869, 7.62556774870938086356923744265, 8.607069669557467518372935749060, 9.316865280991189701768725136864, 10.43037531847494923503517003438

Graph of the $Z$-function along the critical line