Properties

Label 2-675-27.16-c1-0-47
Degree $2$
Conductor $675$
Sign $0.532 + 0.846i$
Analytic cond. $5.38990$
Root an. cond. $2.32161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.02 + 0.860i)2-s + (0.817 − 1.52i)3-s + (−0.0359 − 0.204i)4-s + (2.15 − 0.862i)6-s + (0.0601 − 0.340i)7-s + (1.47 − 2.55i)8-s + (−1.66 − 2.49i)9-s + (−0.377 + 0.137i)11-s + (−0.341 − 0.111i)12-s + (−0.575 + 0.483i)13-s + (0.355 − 0.297i)14-s + (3.32 − 1.21i)16-s + (0.670 + 1.16i)17-s + (0.442 − 3.99i)18-s + (1.87 − 3.24i)19-s + ⋯
L(s)  = 1  + (0.725 + 0.608i)2-s + (0.471 − 0.881i)3-s + (−0.0179 − 0.102i)4-s + (0.878 − 0.352i)6-s + (0.0227 − 0.128i)7-s + (0.522 − 0.904i)8-s + (−0.554 − 0.832i)9-s + (−0.113 + 0.0414i)11-s + (−0.0984 − 0.0323i)12-s + (−0.159 + 0.133i)13-s + (0.0948 − 0.0796i)14-s + (0.832 − 0.302i)16-s + (0.162 + 0.281i)17-s + (0.104 − 0.940i)18-s + (0.429 − 0.744i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.532 + 0.846i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.532 + 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $0.532 + 0.846i$
Analytic conductor: \(5.38990\)
Root analytic conductor: \(2.32161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{675} (151, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :1/2),\ 0.532 + 0.846i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.13173 - 1.17740i\)
\(L(\frac12)\) \(\approx\) \(2.13173 - 1.17740i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.817 + 1.52i)T \)
5 \( 1 \)
good2 \( 1 + (-1.02 - 0.860i)T + (0.347 + 1.96i)T^{2} \)
7 \( 1 + (-0.0601 + 0.340i)T + (-6.57 - 2.39i)T^{2} \)
11 \( 1 + (0.377 - 0.137i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (0.575 - 0.483i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (-0.670 - 1.16i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-1.87 + 3.24i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.536 + 3.04i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-3.79 - 3.18i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (0.774 + 4.39i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 + (-1.25 - 2.16i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-1.73 + 1.45i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (8.03 - 2.92i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (2.13 - 12.1i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 10.1T + 53T^{2} \)
59 \( 1 + (-12.7 - 4.64i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-2.31 + 13.1i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (9.40 - 7.89i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (1.14 + 1.98i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (6.23 - 10.8i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-9.11 - 7.64i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (-3.71 - 3.11i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (0.197 - 0.341i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-13.9 + 5.07i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.28624659272796074190820862780, −9.404947062562740564403581215558, −8.416240964278201662794907987073, −7.46615187096169703349550078335, −6.77522060470762273242906885647, −6.00838462334615200360175050166, −4.99142798520199354980952317442, −3.89763003808994751971578013375, −2.60199679454719406380133663904, −1.05491623349453128584434891938, 2.12599159912207851973369320870, 3.20270766564082093720628363547, 3.91853340170749070122896833616, 4.96359386071825799315445755358, 5.64743458532233604246053713054, 7.30352325256182788303050322806, 8.205085294431949057596639781252, 8.913684471919943670396581290230, 10.06339899104003695592990151405, 10.53898735963651999036162144577

Graph of the $Z$-function along the critical line