L(s) = 1 | + (1.62 + 1.36i)2-s + (0.986 + 1.42i)3-s + (0.430 + 2.44i)4-s + (−0.338 + 3.65i)6-s + (−0.168 + 0.957i)7-s + (−0.508 + 0.880i)8-s + (−1.05 + 2.80i)9-s + (0.297 − 0.108i)11-s + (−3.05 + 3.02i)12-s + (1.15 − 0.973i)13-s + (−1.57 + 1.32i)14-s + (2.63 − 0.960i)16-s + (0.587 + 1.01i)17-s + (−5.53 + 3.11i)18-s + (−3.11 + 5.38i)19-s + ⋯ |
L(s) = 1 | + (1.14 + 0.962i)2-s + (0.569 + 0.822i)3-s + (0.215 + 1.22i)4-s + (−0.138 + 1.49i)6-s + (−0.0638 + 0.361i)7-s + (−0.179 + 0.311i)8-s + (−0.351 + 0.936i)9-s + (0.0897 − 0.0326i)11-s + (−0.881 + 0.872i)12-s + (0.321 − 0.269i)13-s + (−0.421 + 0.353i)14-s + (0.659 − 0.240i)16-s + (0.142 + 0.246i)17-s + (−1.30 + 0.734i)18-s + (−0.713 + 1.23i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.653 - 0.757i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.653 - 0.757i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.34257 + 2.93136i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.34257 + 2.93136i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.986 - 1.42i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-1.62 - 1.36i)T + (0.347 + 1.96i)T^{2} \) |
| 7 | \( 1 + (0.168 - 0.957i)T + (-6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (-0.297 + 0.108i)T + (8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (-1.15 + 0.973i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (-0.587 - 1.01i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.11 - 5.38i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.375 + 2.12i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (3.37 + 2.83i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (1.50 + 8.54i)T + (-29.1 + 10.6i)T^{2} \) |
| 37 | \( 1 + (2.23 + 3.86i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.47 + 3.75i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (-5.25 + 1.91i)T + (32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (-0.429 + 2.43i)T + (-44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 - 10.8T + 53T^{2} \) |
| 59 | \( 1 + (-1.62 - 0.589i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-0.176 + 0.999i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (0.656 - 0.550i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-4.79 - 8.31i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (7.62 - 13.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (8.59 + 7.20i)T + (13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (3.58 + 3.01i)T + (14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (-7.74 + 13.4i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.21 - 1.89i)T + (74.3 - 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.68921980319224206238842714027, −9.956369464671590993054189384578, −8.895941542968048440983080993922, −8.075115898910563730809162840868, −7.26631143956555815013489155919, −5.87303197272615699740979666667, −5.60810353140733925215839468013, −4.17522561281190791329402082436, −3.83686296053500281556186554679, −2.41133679334654022614194492814,
1.29383523158420305280958281267, 2.47490457043454455482152803912, 3.38940474717958361661909244113, 4.33318864812752076962702499288, 5.46063028422900635968733143240, 6.57905370223547202702574396983, 7.39206851751423087915316630039, 8.526923685343059574219119768890, 9.347081716866319151250948893997, 10.56417314625224050394968606236