Properties

Label 2-675-225.121-c1-0-9
Degree $2$
Conductor $675$
Sign $0.388 - 0.921i$
Analytic cond. $5.38990$
Root an. cond. $2.32161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.62 + 0.345i)2-s + (0.700 − 0.311i)4-s + (0.380 + 2.20i)5-s + (0.694 + 1.20i)7-s + (1.65 − 1.20i)8-s + (−1.38 − 3.45i)10-s + (4.44 − 0.945i)11-s + (−0.664 − 0.141i)13-s + (−1.54 − 1.71i)14-s + (−3.30 + 3.67i)16-s + (1.73 − 1.26i)17-s + (5.56 − 4.04i)19-s + (0.953 + 1.42i)20-s + (−6.90 + 3.07i)22-s + (0.0716 + 0.0796i)23-s + ⋯
L(s)  = 1  + (−1.15 + 0.244i)2-s + (0.350 − 0.155i)4-s + (0.170 + 0.985i)5-s + (0.262 + 0.454i)7-s + (0.586 − 0.426i)8-s + (−0.436 − 1.09i)10-s + (1.34 − 0.285i)11-s + (−0.184 − 0.0391i)13-s + (−0.412 − 0.458i)14-s + (−0.827 + 0.918i)16-s + (0.420 − 0.305i)17-s + (1.27 − 0.928i)19-s + (0.213 + 0.318i)20-s + (−1.47 + 0.655i)22-s + (0.0149 + 0.0166i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.388 - 0.921i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $0.388 - 0.921i$
Analytic conductor: \(5.38990\)
Root analytic conductor: \(2.32161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{675} (496, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :1/2),\ 0.388 - 0.921i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.762911 + 0.506097i\)
\(L(\frac12)\) \(\approx\) \(0.762911 + 0.506097i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-0.380 - 2.20i)T \)
good2 \( 1 + (1.62 - 0.345i)T + (1.82 - 0.813i)T^{2} \)
7 \( 1 + (-0.694 - 1.20i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-4.44 + 0.945i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (0.664 + 0.141i)T + (11.8 + 5.28i)T^{2} \)
17 \( 1 + (-1.73 + 1.26i)T + (5.25 - 16.1i)T^{2} \)
19 \( 1 + (-5.56 + 4.04i)T + (5.87 - 18.0i)T^{2} \)
23 \( 1 + (-0.0716 - 0.0796i)T + (-2.40 + 22.8i)T^{2} \)
29 \( 1 + (-0.214 + 2.04i)T + (-28.3 - 6.02i)T^{2} \)
31 \( 1 + (-0.675 - 6.43i)T + (-30.3 + 6.44i)T^{2} \)
37 \( 1 + (0.886 + 2.72i)T + (-29.9 + 21.7i)T^{2} \)
41 \( 1 + (-5.31 - 1.12i)T + (37.4 + 16.6i)T^{2} \)
43 \( 1 + (0.613 + 1.06i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (1.23 - 11.7i)T + (-45.9 - 9.77i)T^{2} \)
53 \( 1 + (-1.07 - 0.781i)T + (16.3 + 50.4i)T^{2} \)
59 \( 1 + (1.69 + 0.360i)T + (53.8 + 23.9i)T^{2} \)
61 \( 1 + (-3.69 + 0.784i)T + (55.7 - 24.8i)T^{2} \)
67 \( 1 + (-1.48 - 14.1i)T + (-65.5 + 13.9i)T^{2} \)
71 \( 1 + (-10.9 - 7.96i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (1.83 - 5.63i)T + (-59.0 - 42.9i)T^{2} \)
79 \( 1 + (-0.938 + 8.92i)T + (-77.2 - 16.4i)T^{2} \)
83 \( 1 + (16.5 + 7.37i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 + (2.33 - 7.18i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (1.13 - 10.8i)T + (-94.8 - 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46484640024769276599300003822, −9.534473862215475691029108633232, −9.138758534400465379542827540315, −8.102152084652542808277312092824, −7.20098389444385471557077797422, −6.62529820079047425046787729367, −5.43642587164986222744899563709, −4.02367134410087877194185114235, −2.78759643830104507764331296515, −1.21807737464589377787404870655, 0.939318557900853975578709107651, 1.79393725817672982330564795355, 3.80465854703123432241807355883, 4.78013551250141846597938208040, 5.83001592585832196066694798330, 7.18403839630068787537770202377, 7.981186826696697329043155332778, 8.719768939581477810659150025580, 9.647724501032545748289154130869, 9.863030217545460139802743234230

Graph of the $Z$-function along the critical line