L(s) = 1 | + 0.381·2-s − 3.85·4-s − 3.70i·7-s − 3·8-s − 8.18i·11-s + 7.70i·13-s − 1.41i·14-s + 14.2·16-s + 11.9·17-s − 5.58·19-s − 3.12i·22-s − 28.4·23-s + 2.94i·26-s + 14.2i·28-s + 56.0i·29-s + ⋯ |
L(s) = 1 | + 0.190·2-s − 0.963·4-s − 0.529i·7-s − 0.375·8-s − 0.743i·11-s + 0.592i·13-s − 0.101i·14-s + 0.891·16-s + 0.702·17-s − 0.293·19-s − 0.142i·22-s − 1.23·23-s + 0.113i·26-s + 0.510i·28-s + 1.93i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.6183767815\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6183767815\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 0.381T + 4T^{2} \) |
| 7 | \( 1 + 3.70iT - 49T^{2} \) |
| 11 | \( 1 + 8.18iT - 121T^{2} \) |
| 13 | \( 1 - 7.70iT - 169T^{2} \) |
| 17 | \( 1 - 11.9T + 289T^{2} \) |
| 19 | \( 1 + 5.58T + 361T^{2} \) |
| 23 | \( 1 + 28.4T + 529T^{2} \) |
| 29 | \( 1 - 56.0iT - 841T^{2} \) |
| 31 | \( 1 + 31.2T + 961T^{2} \) |
| 37 | \( 1 - 53.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 60.7iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 71.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 46.1T + 2.20e3T^{2} \) |
| 53 | \( 1 + 73.3T + 2.80e3T^{2} \) |
| 59 | \( 1 - 90.7iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 19T + 3.72e3T^{2} \) |
| 67 | \( 1 + 0.334iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 81.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 50.7iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 48.1T + 6.24e3T^{2} \) |
| 83 | \( 1 + 62.6T + 6.88e3T^{2} \) |
| 89 | \( 1 - 69.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 159. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43852948110473016275430271695, −9.742868389460899954654382024900, −8.787397002920623489911624665652, −8.152692214644987379616088214471, −7.05504986378220121664856517778, −5.96393905060544703201501914960, −5.05654634950775112215826863525, −4.04410524930211559013349186041, −3.22366011236641096994284230132, −1.32285564656947912269952017432,
0.22873424029944259592098457199, 2.07988123780413599632092244256, 3.51499130694747451351471718154, 4.44572634688722438953783200113, 5.45916413708256502492068843001, 6.15888423698253625564290851509, 7.65710963503074869858248295757, 8.197929572174811516225615083161, 9.356778017161125352686431960374, 9.776262327091882971026456394908