L(s) = 1 | − 2.61·2-s + 2.85·4-s + 9.70i·7-s + 3·8-s − 14.1i·11-s − 5.70i·13-s − 25.4i·14-s − 19.2·16-s + 5.94·17-s − 32.4·19-s + 37.1i·22-s + 1.58·23-s + 14.9i·26-s + 27.7i·28-s + 2.06i·29-s + ⋯ |
L(s) = 1 | − 1.30·2-s + 0.713·4-s + 1.38i·7-s + 0.375·8-s − 1.28i·11-s − 0.439i·13-s − 1.81i·14-s − 1.20·16-s + 0.349·17-s − 1.70·19-s + 1.68i·22-s + 0.0688·23-s + 0.574i·26-s + 0.989i·28-s + 0.0713i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.5991088700\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5991088700\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + 2.61T + 4T^{2} \) |
| 7 | \( 1 - 9.70iT - 49T^{2} \) |
| 11 | \( 1 + 14.1iT - 121T^{2} \) |
| 13 | \( 1 + 5.70iT - 169T^{2} \) |
| 17 | \( 1 - 5.94T + 289T^{2} \) |
| 19 | \( 1 + 32.4T + 361T^{2} \) |
| 23 | \( 1 - 1.58T + 529T^{2} \) |
| 29 | \( 1 - 2.06iT - 841T^{2} \) |
| 31 | \( 1 - 49.2T + 961T^{2} \) |
| 37 | \( 1 - 26.5iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 65.2iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 49.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 70.1T + 2.20e3T^{2} \) |
| 53 | \( 1 - 28.6T + 2.80e3T^{2} \) |
| 59 | \( 1 + 95.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 19T + 3.72e3T^{2} \) |
| 67 | \( 1 + 107. iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 75.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 96.7iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 101.T + 6.24e3T^{2} \) |
| 83 | \( 1 + 44.6T + 6.88e3T^{2} \) |
| 89 | \( 1 + 56.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 132. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.00433890424202073814239283001, −9.130658529747800804693320352545, −8.328422166823463382187578856150, −8.181777945426001665959184805729, −6.63521717735912869021892917894, −5.88636104006275099049156315005, −4.72846113362431309110236555415, −3.11959650746473241301572570864, −1.96296581437555210386049974862, −0.41676208437313576133459916042,
1.00676078411075651260891771537, 2.19188685896074619933147380002, 4.08388660950456453096317425166, 4.67965801789320651249209930795, 6.52196851961997051563699180485, 7.13190193842903140804733951040, 7.921090662276098430886134758913, 8.712507052032461269051856465977, 9.790713831374389220499167452122, 10.19070081322204433565279321297