L(s) = 1 | + 3·2-s + 5·4-s + 5i·7-s + 3·8-s + 15i·11-s + 10i·13-s + 15i·14-s − 11·16-s + 18·17-s + 16·19-s + 45i·22-s + 12·23-s + 30i·26-s + 25i·28-s + 30i·29-s + ⋯ |
L(s) = 1 | + 1.5·2-s + 1.25·4-s + 0.714i·7-s + 0.375·8-s + 1.36i·11-s + 0.769i·13-s + 1.07i·14-s − 0.687·16-s + 1.05·17-s + 0.842·19-s + 2.04i·22-s + 0.521·23-s + 1.15i·26-s + 0.892i·28-s + 1.03i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.943820892\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.943820892\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 3T + 4T^{2} \) |
| 7 | \( 1 - 5iT - 49T^{2} \) |
| 11 | \( 1 - 15iT - 121T^{2} \) |
| 13 | \( 1 - 10iT - 169T^{2} \) |
| 17 | \( 1 - 18T + 289T^{2} \) |
| 19 | \( 1 - 16T + 361T^{2} \) |
| 23 | \( 1 - 12T + 529T^{2} \) |
| 29 | \( 1 - 30iT - 841T^{2} \) |
| 31 | \( 1 + T + 961T^{2} \) |
| 37 | \( 1 - 20iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 60iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 50iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 6T + 2.20e3T^{2} \) |
| 53 | \( 1 - 27T + 2.80e3T^{2} \) |
| 59 | \( 1 + 30iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 76T + 3.72e3T^{2} \) |
| 67 | \( 1 + 10iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 90iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 65iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 14T + 6.24e3T^{2} \) |
| 83 | \( 1 + 3T + 6.88e3T^{2} \) |
| 89 | \( 1 - 90iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 85iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64851599175318632055552668802, −9.582167197817375109862810087086, −8.842134294887871721329781376839, −7.40557003774436145508132022684, −6.76698480526142161823728617350, −5.57835892865768253019660573957, −5.04207731762770420139637553484, −4.01892325873428724013848435848, −2.98001924255302975424697300431, −1.84198216154308183204170517647,
0.894699824673261467153978948570, 2.92481409051240291336276720271, 3.49634623835504241710561409842, 4.58784017769784777864863934685, 5.59944052124229439036062918436, 6.14202149878752256502868416011, 7.34969937871699660532418298244, 8.155070555436612444889929464082, 9.388483494944059920257428679423, 10.42240909120571122998171852432