| L(s) = 1 | − 3.69·2-s + 9.64·4-s + 9.20i·7-s − 20.8·8-s + 15.5i·11-s + 20.6i·13-s − 34.0i·14-s + 38.4·16-s − 22.4·17-s − 2.33·19-s − 57.4i·22-s − 19.3·23-s − 76.0i·26-s + 88.8i·28-s + 2.92i·29-s + ⋯ |
| L(s) = 1 | − 1.84·2-s + 2.41·4-s + 1.31i·7-s − 2.60·8-s + 1.41i·11-s + 1.58i·13-s − 2.42i·14-s + 2.40·16-s − 1.32·17-s − 0.122·19-s − 2.61i·22-s − 0.839·23-s − 2.92i·26-s + 3.17i·28-s + 0.100i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(0.2629724752\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2629724752\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| good | 2 | \( 1 + 3.69T + 4T^{2} \) |
| 7 | \( 1 - 9.20iT - 49T^{2} \) |
| 11 | \( 1 - 15.5iT - 121T^{2} \) |
| 13 | \( 1 - 20.6iT - 169T^{2} \) |
| 17 | \( 1 + 22.4T + 289T^{2} \) |
| 19 | \( 1 + 2.33T + 361T^{2} \) |
| 23 | \( 1 + 19.3T + 529T^{2} \) |
| 29 | \( 1 - 2.92iT - 841T^{2} \) |
| 31 | \( 1 + 28.1T + 961T^{2} \) |
| 37 | \( 1 + 65.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 7.48iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 11.9iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 50.5T + 2.20e3T^{2} \) |
| 53 | \( 1 - 80.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + 9.46iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 52.7T + 3.72e3T^{2} \) |
| 67 | \( 1 + 65.2iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 0.942iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 12.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 68.4T + 6.24e3T^{2} \) |
| 83 | \( 1 + 38.9T + 6.88e3T^{2} \) |
| 89 | \( 1 + 63.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 186. iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57758584375985371848979023393, −9.561644566335614121456279639096, −9.121629063154706741657186171634, −8.559811190424339770980331616630, −7.35870475778525292342240284308, −6.80064964835937895232872834857, −5.79967735347598620333941412660, −4.28754924005453837787360866059, −2.20470461491553139086681662885, −2.00690884313792020103700423565,
0.19579918079945404992734294801, 1.05078964710140886132073665202, 2.63583948159570125184885029050, 3.83194963886353548978936833711, 5.65200018547171119941555100074, 6.63729093320680882740141943432, 7.44425717374020996253657304315, 8.251457026717938326662797521830, 8.755295031644372425967353114680, 9.929351247795320507943760563156