L(s) = 1 | + (−1.32 − 0.233i)2-s + (0.300 + 1.70i)3-s + (−0.173 − 0.0632i)4-s − 2.33i·6-s + (−0.237 − 0.652i)7-s + (2.54 + 1.47i)8-s + (−2.81 + 1.02i)9-s + (−3.52 − 2.95i)11-s + (0.0555 − 0.315i)12-s + (1.39 − 0.245i)13-s + (0.162 + 0.921i)14-s + (−2.75 − 2.31i)16-s + (3.35 − 1.93i)17-s + (3.98 − 0.701i)18-s + (3.53 − 6.11i)19-s + ⋯ |
L(s) = 1 | + (−0.938 − 0.165i)2-s + (0.173 + 0.984i)3-s + (−0.0868 − 0.0316i)4-s − 0.952i·6-s + (−0.0897 − 0.246i)7-s + (0.901 + 0.520i)8-s + (−0.939 + 0.342i)9-s + (−1.06 − 0.890i)11-s + (0.0160 − 0.0909i)12-s + (0.385 − 0.0679i)13-s + (0.0434 + 0.246i)14-s + (−0.688 − 0.577i)16-s + (0.814 − 0.470i)17-s + (0.938 − 0.165i)18-s + (0.810 − 1.40i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 + 0.498i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.866 + 0.498i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.695868 - 0.185796i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.695868 - 0.185796i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.300 - 1.70i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (1.32 + 0.233i)T + (1.87 + 0.684i)T^{2} \) |
| 7 | \( 1 + (0.237 + 0.652i)T + (-5.36 + 4.49i)T^{2} \) |
| 11 | \( 1 + (3.52 + 2.95i)T + (1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (-1.39 + 0.245i)T + (12.2 - 4.44i)T^{2} \) |
| 17 | \( 1 + (-3.35 + 1.93i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.53 + 6.11i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.30 - 3.59i)T + (-17.6 - 14.7i)T^{2} \) |
| 29 | \( 1 + (0.851 - 4.82i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (-0.786 - 0.286i)T + (23.7 + 19.9i)T^{2} \) |
| 37 | \( 1 + (-6.91 + 3.99i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.36 + 7.74i)T + (-38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (-1.33 + 1.59i)T + (-7.46 - 42.3i)T^{2} \) |
| 47 | \( 1 + (-2.35 - 6.46i)T + (-36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 - 3.05iT - 53T^{2} \) |
| 59 | \( 1 + (-6.82 + 5.72i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (-8.12 + 2.95i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (-9.30 + 1.64i)T + (62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (-2.90 - 5.02i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (4.68 + 2.70i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.27 + 12.9i)T + (-74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (1.11 + 0.197i)T + (77.9 + 28.3i)T^{2} \) |
| 89 | \( 1 + (-0.368 + 0.637i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (5.36 - 6.39i)T + (-16.8 - 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32528780555011337614720903119, −9.522426375888190694028423593847, −8.928661338589449477849925071449, −8.086160729585693659491367173085, −7.31869722782587151999877634616, −5.58184593789101889754122754338, −5.06748380628653155979175666852, −3.74744256377714989157463753481, −2.66085796499277951586985337821, −0.62849322601942629842673597837,
1.14658906272257958365919149968, 2.45189780804244914999831040983, 3.91980607458642315216404537444, 5.35730637163232270355990421131, 6.35241060450892734967647982055, 7.46975732032247648366759491313, 7.978210143242003999672557735940, 8.547316996741246588766523143508, 9.807624564525901254251490813176, 10.12444590071057972626949905274