L(s) = 1 | + (1.52 − 2.18i)2-s + (−1.25 + 1.19i)3-s + (−1.73 − 4.77i)4-s + (0.674 + 4.56i)6-s + (−2.78 + 1.30i)7-s + (−7.92 − 2.12i)8-s + (0.166 − 2.99i)9-s + (−0.426 − 0.508i)11-s + (7.87 + 3.94i)12-s + (−0.384 + 0.269i)13-s + (−1.42 + 8.06i)14-s + (−8.94 + 7.50i)16-s + (−4.50 + 1.20i)17-s + (−6.27 − 4.93i)18-s + (−4.80 + 2.77i)19-s + ⋯ |
L(s) = 1 | + (1.07 − 1.54i)2-s + (−0.726 + 0.687i)3-s + (−0.869 − 2.38i)4-s + (0.275 + 1.86i)6-s + (−1.05 + 0.491i)7-s + (−2.80 − 0.750i)8-s + (0.0555 − 0.998i)9-s + (−0.128 − 0.153i)11-s + (2.27 + 1.13i)12-s + (−0.106 + 0.0746i)13-s + (−0.380 + 2.15i)14-s + (−2.23 + 1.87i)16-s + (−1.09 + 0.292i)17-s + (−1.47 − 1.16i)18-s + (−1.10 + 0.637i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.263 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.263 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.207265 + 0.271464i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.207265 + 0.271464i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.25 - 1.19i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-1.52 + 2.18i)T + (-0.684 - 1.87i)T^{2} \) |
| 7 | \( 1 + (2.78 - 1.30i)T + (4.49 - 5.36i)T^{2} \) |
| 11 | \( 1 + (0.426 + 0.508i)T + (-1.91 + 10.8i)T^{2} \) |
| 13 | \( 1 + (0.384 - 0.269i)T + (4.44 - 12.2i)T^{2} \) |
| 17 | \( 1 + (4.50 - 1.20i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (4.80 - 2.77i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.0280 - 0.0602i)T + (-14.7 - 17.6i)T^{2} \) |
| 29 | \( 1 + (0.434 + 2.46i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (-1.76 + 0.642i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (0.656 + 2.44i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (-1.62 - 0.286i)T + (38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (8.36 + 0.732i)T + (42.3 + 7.46i)T^{2} \) |
| 47 | \( 1 + (1.73 + 3.71i)T + (-30.2 + 36.0i)T^{2} \) |
| 53 | \( 1 + (-7.52 + 7.52i)T - 53iT^{2} \) |
| 59 | \( 1 + (-3.49 - 2.93i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (5.84 + 2.12i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (3.13 + 4.48i)T + (-22.9 + 62.9i)T^{2} \) |
| 71 | \( 1 + (5.33 + 3.07i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.64 + 13.6i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-5.34 + 0.941i)T + (74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (4.64 + 3.25i)T + (28.3 + 77.9i)T^{2} \) |
| 89 | \( 1 + (-3.08 - 5.33i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.18 + 13.5i)T + (-95.5 - 16.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25820606948517053495639795181, −9.513998535575079742645767616427, −8.732995934815772925269552290514, −6.50484594375668924023447464322, −6.01223092902696104735208000650, −4.99627574744966555039219488117, −4.10899334877248002567558735803, −3.31419297190079457702702110870, −2.11506103036492757840675040014, −0.12973839735175194444695119112,
2.75111923196652864985116834060, 4.14333389086590823752835598355, 4.93960071700940304363061291416, 5.95984222832275434037803502055, 6.77715491183729487915097768258, 6.98362428334074148401666307012, 8.091725585462489522595015818228, 8.986178813693678144048801306877, 10.31856595575051358820127459209, 11.41268752495389214340443624785