Properties

Label 2-675-135.49-c1-0-36
Degree $2$
Conductor $675$
Sign $0.961 + 0.275i$
Analytic cond. $5.38990$
Root an. cond. $2.32161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.267 + 0.318i)2-s + (1.72 + 0.159i)3-s + (0.317 − 1.79i)4-s + (0.409 + 0.591i)6-s + (−1.29 + 0.229i)7-s + (1.37 − 0.795i)8-s + (2.94 + 0.551i)9-s + (4.90 + 1.78i)11-s + (0.834 − 3.05i)12-s + (0.0116 − 0.0138i)13-s + (−0.419 − 0.352i)14-s + (−2.81 − 1.02i)16-s + (−2.71 − 1.56i)17-s + (0.612 + 1.08i)18-s + (0.208 + 0.361i)19-s + ⋯
L(s)  = 1  + (0.188 + 0.225i)2-s + (0.995 + 0.0922i)3-s + (0.158 − 0.899i)4-s + (0.167 + 0.241i)6-s + (−0.491 + 0.0866i)7-s + (0.486 − 0.281i)8-s + (0.982 + 0.183i)9-s + (1.47 + 0.537i)11-s + (0.241 − 0.881i)12-s + (0.00321 − 0.00383i)13-s + (−0.112 − 0.0941i)14-s + (−0.703 − 0.256i)16-s + (−0.658 − 0.379i)17-s + (0.144 + 0.255i)18-s + (0.0478 + 0.0829i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.961 + 0.275i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.961 + 0.275i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $0.961 + 0.275i$
Analytic conductor: \(5.38990\)
Root analytic conductor: \(2.32161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{675} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :1/2),\ 0.961 + 0.275i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.45667 - 0.344915i\)
\(L(\frac12)\) \(\approx\) \(2.45667 - 0.344915i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.72 - 0.159i)T \)
5 \( 1 \)
good2 \( 1 + (-0.267 - 0.318i)T + (-0.347 + 1.96i)T^{2} \)
7 \( 1 + (1.29 - 0.229i)T + (6.57 - 2.39i)T^{2} \)
11 \( 1 + (-4.90 - 1.78i)T + (8.42 + 7.07i)T^{2} \)
13 \( 1 + (-0.0116 + 0.0138i)T + (-2.25 - 12.8i)T^{2} \)
17 \( 1 + (2.71 + 1.56i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.208 - 0.361i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.01 + 0.179i)T + (21.6 + 7.86i)T^{2} \)
29 \( 1 + (-5.98 + 5.01i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-0.647 + 3.67i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (-3.83 - 2.21i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (2.81 + 2.36i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (2.84 - 7.80i)T + (-32.9 - 27.6i)T^{2} \)
47 \( 1 + (6.99 - 1.23i)T + (44.1 - 16.0i)T^{2} \)
53 \( 1 + 1.30iT - 53T^{2} \)
59 \( 1 + (3.47 - 1.26i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (-1.20 - 6.80i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (7.08 - 8.44i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-3.04 + 5.26i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (0.473 - 0.273i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (0.374 - 0.314i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (-2.96 - 3.53i)T + (-14.4 + 81.7i)T^{2} \)
89 \( 1 + (1.68 + 2.92i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (3.40 - 9.34i)T + (-74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07214158430828920723683593732, −9.637237737867987003908286410191, −8.937406432807379721511668068295, −7.81758307507721995164203065664, −6.71595168720651318427060114433, −6.30111969419873959695558499225, −4.75743081925946595170405204146, −4.03329416175263954167204016299, −2.63246080980123769924725029928, −1.40051767253775882849923089256, 1.69534182797887690595467793265, 3.05515276796075634440844657230, 3.68556506626407836715348994854, 4.61733593020316879967267102870, 6.49086426920036285594949847188, 6.94470916533015248601483486586, 8.144830845805705431457229666032, 8.726443631070632544078919641788, 9.452073792867935622005925072294, 10.53946569621091503188580563552

Graph of the $Z$-function along the critical line