L(s) = 1 | + (−1.36 − 1.62i)2-s + (1.42 + 0.986i)3-s + (−0.430 + 2.44i)4-s + (−0.338 − 3.65i)6-s + (−0.957 + 0.168i)7-s + (0.880 − 0.508i)8-s + (1.05 + 2.80i)9-s + (0.297 + 0.108i)11-s + (−3.02 + 3.05i)12-s + (−0.973 + 1.15i)13-s + (1.57 + 1.32i)14-s + (2.63 + 0.960i)16-s + (−1.01 − 0.587i)17-s + (3.11 − 5.53i)18-s + (3.11 + 5.38i)19-s + ⋯ |
L(s) = 1 | + (−0.962 − 1.14i)2-s + (0.822 + 0.569i)3-s + (−0.215 + 1.22i)4-s + (−0.138 − 1.49i)6-s + (−0.361 + 0.0638i)7-s + (0.311 − 0.179i)8-s + (0.351 + 0.936i)9-s + (0.0897 + 0.0326i)11-s + (−0.872 + 0.881i)12-s + (−0.269 + 0.321i)13-s + (0.421 + 0.353i)14-s + (0.659 + 0.240i)16-s + (−0.246 − 0.142i)17-s + (0.734 − 1.30i)18-s + (0.713 + 1.23i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 - 0.385i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.922 - 0.385i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.961515 + 0.192572i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.961515 + 0.192572i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.42 - 0.986i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (1.36 + 1.62i)T + (-0.347 + 1.96i)T^{2} \) |
| 7 | \( 1 + (0.957 - 0.168i)T + (6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (-0.297 - 0.108i)T + (8.42 + 7.07i)T^{2} \) |
| 13 | \( 1 + (0.973 - 1.15i)T + (-2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (1.01 + 0.587i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.11 - 5.38i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.12 + 0.375i)T + (21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (-3.37 + 2.83i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (1.50 - 8.54i)T + (-29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (-3.86 - 2.23i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.47 - 3.75i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (1.91 - 5.25i)T + (-32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (-2.43 + 0.429i)T + (44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 - 10.8iT - 53T^{2} \) |
| 59 | \( 1 + (1.62 - 0.589i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (-0.176 - 0.999i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (0.550 - 0.656i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-4.79 + 8.31i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-13.1 + 7.62i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-8.59 + 7.20i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (3.01 + 3.58i)T + (-14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (7.74 + 13.4i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.89 - 5.21i)T + (-74.3 - 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31708491018943916109177039981, −9.712666503285836927096266480157, −9.157511566142836186728828830416, −8.270718374793651175648176096242, −7.57441623807657332271583901703, −6.11937406048022772851364833586, −4.68120593824683299595332654929, −3.52168726975458874802697902556, −2.72396868553313850815985098257, −1.53903307418447762180925539612,
0.67633313197859117273193058711, 2.48487937370958726783925272005, 3.75910990145637539849630947830, 5.37094241963712067286976807553, 6.47856950718521362413345320077, 7.06573786109093682185296374337, 7.85593856364442504154430789898, 8.526697655913526913874440222563, 9.439526259870678926828202416773, 9.791445873977435616009374421723