Properties

Label 2-675-1.1-c3-0-36
Degree $2$
Conductor $675$
Sign $-1$
Analytic cond. $39.8262$
Root an. cond. $6.31080$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.24·2-s + 9.99·4-s − 11·7-s − 8.48·8-s + 16.9·11-s − 29·13-s + 46.6·14-s − 44.0·16-s + 50.9·17-s + 29·19-s − 71.9·22-s − 84.8·23-s + 123.·26-s − 109.·28-s + 271.·29-s − 268·31-s + 254.·32-s − 215.·34-s − 83·37-s − 123.·38-s − 271.·41-s + 232·43-s + 169.·44-s + 360·46-s + 390.·47-s − 222·49-s − 289.·52-s + ⋯
L(s)  = 1  − 1.49·2-s + 1.24·4-s − 0.593·7-s − 0.374·8-s + 0.465·11-s − 0.618·13-s + 0.890·14-s − 0.687·16-s + 0.726·17-s + 0.350·19-s − 0.697·22-s − 0.769·23-s + 0.928·26-s − 0.742·28-s + 1.73·29-s − 1.55·31-s + 1.40·32-s − 1.08·34-s − 0.368·37-s − 0.525·38-s − 1.03·41-s + 0.822·43-s + 0.581·44-s + 1.15·46-s + 1.21·47-s − 0.647·49-s − 0.773·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(39.8262\)
Root analytic conductor: \(6.31080\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 675,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 4.24T + 8T^{2} \)
7 \( 1 + 11T + 343T^{2} \)
11 \( 1 - 16.9T + 1.33e3T^{2} \)
13 \( 1 + 29T + 2.19e3T^{2} \)
17 \( 1 - 50.9T + 4.91e3T^{2} \)
19 \( 1 - 29T + 6.85e3T^{2} \)
23 \( 1 + 84.8T + 1.21e4T^{2} \)
29 \( 1 - 271.T + 2.43e4T^{2} \)
31 \( 1 + 268T + 2.97e4T^{2} \)
37 \( 1 + 83T + 5.06e4T^{2} \)
41 \( 1 + 271.T + 6.89e4T^{2} \)
43 \( 1 - 232T + 7.95e4T^{2} \)
47 \( 1 - 390.T + 1.03e5T^{2} \)
53 \( 1 + 305.T + 1.48e5T^{2} \)
59 \( 1 - 288.T + 2.05e5T^{2} \)
61 \( 1 - 767T + 2.26e5T^{2} \)
67 \( 1 - 511T + 3.00e5T^{2} \)
71 \( 1 - 712.T + 3.57e5T^{2} \)
73 \( 1 + 137T + 3.89e5T^{2} \)
79 \( 1 + 475T + 4.93e5T^{2} \)
83 \( 1 + 576.T + 5.71e5T^{2} \)
89 \( 1 + 254.T + 7.04e5T^{2} \)
97 \( 1 + 821T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.752970009954713032302948319623, −8.884288458983274553116788075008, −8.083844281435676251140585582200, −7.21997759836997549781354511058, −6.49657974974853502813010212677, −5.24975331191266595583226346327, −3.83921208981546362992786668310, −2.50407051501345297346275278927, −1.21665495723127506118951012085, 0, 1.21665495723127506118951012085, 2.50407051501345297346275278927, 3.83921208981546362992786668310, 5.24975331191266595583226346327, 6.49657974974853502813010212677, 7.21997759836997549781354511058, 8.083844281435676251140585582200, 8.884288458983274553116788075008, 9.752970009954713032302948319623

Graph of the $Z$-function along the critical line