Properties

Label 2-675-1.1-c3-0-18
Degree $2$
Conductor $675$
Sign $1$
Analytic cond. $39.8262$
Root an. cond. $6.31080$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.53·2-s − 1.59·4-s − 27.8·7-s − 24.2·8-s + 35.8·11-s + 27.3·13-s − 70.5·14-s − 48.6·16-s − 93.6·17-s + 135.·19-s + 90.6·22-s + 0.407·23-s + 69.2·26-s + 44.5·28-s + 194.·29-s − 96.7·31-s + 71.1·32-s − 236.·34-s + 186.·37-s + 343.·38-s − 53.6·41-s + 519.·43-s − 57.2·44-s + 1.03·46-s − 190.·47-s + 434.·49-s − 43.7·52-s + ⋯
L(s)  = 1  + 0.894·2-s − 0.199·4-s − 1.50·7-s − 1.07·8-s + 0.981·11-s + 0.583·13-s − 1.34·14-s − 0.760·16-s − 1.33·17-s + 1.63·19-s + 0.878·22-s + 0.00369·23-s + 0.522·26-s + 0.300·28-s + 1.24·29-s − 0.560·31-s + 0.393·32-s − 1.19·34-s + 0.830·37-s + 1.46·38-s − 0.204·41-s + 1.84·43-s − 0.196·44-s + 0.00330·46-s − 0.591·47-s + 1.26·49-s − 0.116·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(675\)    =    \(3^{3} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(39.8262\)
Root analytic conductor: \(6.31080\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 675,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.142623978\)
\(L(\frac12)\) \(\approx\) \(2.142623978\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 2.53T + 8T^{2} \)
7 \( 1 + 27.8T + 343T^{2} \)
11 \( 1 - 35.8T + 1.33e3T^{2} \)
13 \( 1 - 27.3T + 2.19e3T^{2} \)
17 \( 1 + 93.6T + 4.91e3T^{2} \)
19 \( 1 - 135.T + 6.85e3T^{2} \)
23 \( 1 - 0.407T + 1.21e4T^{2} \)
29 \( 1 - 194.T + 2.43e4T^{2} \)
31 \( 1 + 96.7T + 2.97e4T^{2} \)
37 \( 1 - 186.T + 5.06e4T^{2} \)
41 \( 1 + 53.6T + 6.89e4T^{2} \)
43 \( 1 - 519.T + 7.95e4T^{2} \)
47 \( 1 + 190.T + 1.03e5T^{2} \)
53 \( 1 - 533.T + 1.48e5T^{2} \)
59 \( 1 - 472.T + 2.05e5T^{2} \)
61 \( 1 + 327.T + 2.26e5T^{2} \)
67 \( 1 - 78.0T + 3.00e5T^{2} \)
71 \( 1 - 707.T + 3.57e5T^{2} \)
73 \( 1 + 344.T + 3.89e5T^{2} \)
79 \( 1 - 98.3T + 4.93e5T^{2} \)
83 \( 1 + 1.24e3T + 5.71e5T^{2} \)
89 \( 1 + 448.T + 7.04e5T^{2} \)
97 \( 1 + 472.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.890422390154077645530412707886, −9.291629420785936884609927688183, −8.630251291050510103914448387956, −7.07946781292177395644379249829, −6.36417960133212813960406164758, −5.64283787608539005309343459761, −4.38137761457502180465217750064, −3.62093939766273638305106414824, −2.74439316099036633673140211219, −0.74066201650976485270336472157, 0.74066201650976485270336472157, 2.74439316099036633673140211219, 3.62093939766273638305106414824, 4.38137761457502180465217750064, 5.64283787608539005309343459761, 6.36417960133212813960406164758, 7.07946781292177395644379249829, 8.630251291050510103914448387956, 9.291629420785936884609927688183, 9.890422390154077645530412707886

Graph of the $Z$-function along the critical line