Properties

Label 2-6720-1.1-c1-0-9
Degree $2$
Conductor $6720$
Sign $1$
Analytic cond. $53.6594$
Root an. cond. $7.32526$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 4·11-s + 6·13-s + 15-s + 6·17-s − 4·19-s + 21-s + 4·23-s + 25-s − 27-s + 2·29-s − 8·31-s + 4·33-s + 35-s − 6·37-s − 6·39-s + 6·41-s + 8·43-s − 45-s + 49-s − 6·51-s − 6·53-s + 4·55-s + 4·57-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.20·11-s + 1.66·13-s + 0.258·15-s + 1.45·17-s − 0.917·19-s + 0.218·21-s + 0.834·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s − 1.43·31-s + 0.696·33-s + 0.169·35-s − 0.986·37-s − 0.960·39-s + 0.937·41-s + 1.21·43-s − 0.149·45-s + 1/7·49-s − 0.840·51-s − 0.824·53-s + 0.539·55-s + 0.529·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6720\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(53.6594\)
Root analytic conductor: \(7.32526\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{6720} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6720,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.209130472\)
\(L(\frac12)\) \(\approx\) \(1.209130472\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
good11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 14 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79109574555346791256801405222, −7.43386623980937235365317958127, −6.44278460593601672528489601181, −5.85858678198854103520442806218, −5.28311978718186268276058419262, −4.38654278670578428538019687834, −3.55738793139165655919215071776, −2.94584336477056650141047357562, −1.63801114720454161830913248864, −0.59611944990633356231352825460, 0.59611944990633356231352825460, 1.63801114720454161830913248864, 2.94584336477056650141047357562, 3.55738793139165655919215071776, 4.38654278670578428538019687834, 5.28311978718186268276058419262, 5.85858678198854103520442806218, 6.44278460593601672528489601181, 7.43386623980937235365317958127, 7.79109574555346791256801405222

Graph of the $Z$-function along the critical line