L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.227 − 0.393i)5-s + (2.16 − 1.51i)7-s + (−0.499 − 0.866i)9-s + (2.89 − 5.01i)11-s − 5.88·13-s + 0.454·15-s + (−1.45 + 2.51i)17-s + (−2.94 − 5.09i)19-s + (0.227 + 2.63i)21-s + (1.45 + 2.51i)23-s + (2.39 − 4.15i)25-s + 0.999·27-s + 3.54·29-s + (2.16 − 3.75i)31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (−0.101 − 0.176i)5-s + (0.819 − 0.572i)7-s + (−0.166 − 0.288i)9-s + (0.873 − 1.51i)11-s − 1.63·13-s + 0.117·15-s + (−0.352 + 0.611i)17-s + (−0.674 − 1.16i)19-s + (0.0496 + 0.575i)21-s + (0.303 + 0.525i)23-s + (0.479 − 0.830i)25-s + 0.192·27-s + 0.658·29-s + (0.389 − 0.674i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.519 + 0.854i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.519 + 0.854i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.09324 - 0.614750i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09324 - 0.614750i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-2.16 + 1.51i)T \) |
good | 5 | \( 1 + (0.227 + 0.393i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.89 + 5.01i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 5.88T + 13T^{2} \) |
| 17 | \( 1 + (1.45 - 2.51i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.94 + 5.09i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.45 - 2.51i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3.54T + 29T^{2} \) |
| 31 | \( 1 + (-2.16 + 3.75i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.85 + 6.67i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 9.58T + 41T^{2} \) |
| 43 | \( 1 - 10.7T + 43T^{2} \) |
| 47 | \( 1 + (2.45 + 4.25i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (6.56 - 11.3i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.896 + 1.55i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.33 + 4.04i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.94 - 6.82i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 0.909T + 71T^{2} \) |
| 73 | \( 1 + (2.60 - 4.50i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.37 - 2.38i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 9.97T + 83T^{2} \) |
| 89 | \( 1 + (-2.45 - 4.25i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 5.79T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65817597013046762390908688343, −9.407113025508839834508202072447, −8.760554898698027372657552683452, −7.80036839625036506748421483128, −6.79063641406141932394619269169, −5.78469257705750647931345055435, −4.68282486761253215789688117910, −4.06182769229584032342078039341, −2.58745876350191324964081149448, −0.72098421832338440150283413748,
1.64392056228792586546819303860, 2.63402218813191748297696399293, 4.48327230957096945319915433144, 5.00845291865478558062044036231, 6.34319140392880519752054727097, 7.17417696593417048450389981388, 7.82831071397697000067222411506, 8.957027408546834014156172686250, 9.764329623372093609999935298575, 10.69849512346845623804564211338