Properties

Label 2-6664-1.1-c1-0-125
Degree $2$
Conductor $6664$
Sign $-1$
Analytic cond. $53.2123$
Root an. cond. $7.29467$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.474·3-s + 1.63·5-s − 2.77·9-s − 0.241·11-s + 1.90·13-s − 0.775·15-s + 17-s − 5.11·19-s + 3.66·23-s − 2.32·25-s + 2.73·27-s + 2.50·29-s − 2.41·31-s + 0.114·33-s + 3.35·37-s − 0.902·39-s − 9.52·41-s + 9.54·43-s − 4.53·45-s − 8.63·47-s − 0.474·51-s − 11.6·53-s − 0.394·55-s + 2.42·57-s − 2.07·59-s + 10.6·61-s + 3.11·65-s + ⋯
L(s)  = 1  − 0.273·3-s + 0.731·5-s − 0.924·9-s − 0.0726·11-s + 0.527·13-s − 0.200·15-s + 0.242·17-s − 1.17·19-s + 0.764·23-s − 0.465·25-s + 0.527·27-s + 0.464·29-s − 0.433·31-s + 0.0199·33-s + 0.551·37-s − 0.144·39-s − 1.48·41-s + 1.45·43-s − 0.676·45-s − 1.26·47-s − 0.0664·51-s − 1.59·53-s − 0.0531·55-s + 0.321·57-s − 0.269·59-s + 1.36·61-s + 0.386·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6664\)    =    \(2^{3} \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(53.2123\)
Root analytic conductor: \(7.29467\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + 0.474T + 3T^{2} \)
5 \( 1 - 1.63T + 5T^{2} \)
11 \( 1 + 0.241T + 11T^{2} \)
13 \( 1 - 1.90T + 13T^{2} \)
19 \( 1 + 5.11T + 19T^{2} \)
23 \( 1 - 3.66T + 23T^{2} \)
29 \( 1 - 2.50T + 29T^{2} \)
31 \( 1 + 2.41T + 31T^{2} \)
37 \( 1 - 3.35T + 37T^{2} \)
41 \( 1 + 9.52T + 41T^{2} \)
43 \( 1 - 9.54T + 43T^{2} \)
47 \( 1 + 8.63T + 47T^{2} \)
53 \( 1 + 11.6T + 53T^{2} \)
59 \( 1 + 2.07T + 59T^{2} \)
61 \( 1 - 10.6T + 61T^{2} \)
67 \( 1 + 12.5T + 67T^{2} \)
71 \( 1 - 0.576T + 71T^{2} \)
73 \( 1 - 15.5T + 73T^{2} \)
79 \( 1 + 8.46T + 79T^{2} \)
83 \( 1 - 1.02T + 83T^{2} \)
89 \( 1 - 11.4T + 89T^{2} \)
97 \( 1 + 3.69T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76974534124889555215287059289, −6.59528460324967074314081956632, −6.33016898390923616294319536510, −5.52565565512254815795327832198, −4.97432642672980333798658879065, −3.99376954166514568499387379033, −3.08695426353451776738378106320, −2.30075257737528629364590987850, −1.33336941965321098235892111349, 0, 1.33336941965321098235892111349, 2.30075257737528629364590987850, 3.08695426353451776738378106320, 3.99376954166514568499387379033, 4.97432642672980333798658879065, 5.52565565512254815795327832198, 6.33016898390923616294319536510, 6.59528460324967074314081956632, 7.76974534124889555215287059289

Graph of the $Z$-function along the critical line