Properties

Label 2-6664-1.1-c1-0-12
Degree $2$
Conductor $6664$
Sign $1$
Analytic cond. $53.2123$
Root an. cond. $7.29467$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.51·3-s + 0.798·5-s − 0.693·9-s − 5.64·11-s − 4.80·13-s − 1.21·15-s + 17-s + 5.07·19-s + 4.19·23-s − 4.36·25-s + 5.60·27-s + 1.85·29-s − 10.0·31-s + 8.57·33-s − 6.11·37-s + 7.28·39-s − 6.24·41-s − 0.575·43-s − 0.553·45-s − 5.74·47-s − 1.51·51-s + 4.50·53-s − 4.50·55-s − 7.71·57-s − 7.97·59-s − 8.93·61-s − 3.83·65-s + ⋯
L(s)  = 1  − 0.876·3-s + 0.357·5-s − 0.231·9-s − 1.70·11-s − 1.33·13-s − 0.313·15-s + 0.242·17-s + 1.16·19-s + 0.873·23-s − 0.872·25-s + 1.07·27-s + 0.345·29-s − 1.81·31-s + 1.49·33-s − 1.00·37-s + 1.16·39-s − 0.976·41-s − 0.0878·43-s − 0.0825·45-s − 0.837·47-s − 0.212·51-s + 0.618·53-s − 0.607·55-s − 1.02·57-s − 1.03·59-s − 1.14·61-s − 0.475·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6664\)    =    \(2^{3} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(53.2123\)
Root analytic conductor: \(7.29467\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6664,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6104808173\)
\(L(\frac12)\) \(\approx\) \(0.6104808173\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + 1.51T + 3T^{2} \)
5 \( 1 - 0.798T + 5T^{2} \)
11 \( 1 + 5.64T + 11T^{2} \)
13 \( 1 + 4.80T + 13T^{2} \)
19 \( 1 - 5.07T + 19T^{2} \)
23 \( 1 - 4.19T + 23T^{2} \)
29 \( 1 - 1.85T + 29T^{2} \)
31 \( 1 + 10.0T + 31T^{2} \)
37 \( 1 + 6.11T + 37T^{2} \)
41 \( 1 + 6.24T + 41T^{2} \)
43 \( 1 + 0.575T + 43T^{2} \)
47 \( 1 + 5.74T + 47T^{2} \)
53 \( 1 - 4.50T + 53T^{2} \)
59 \( 1 + 7.97T + 59T^{2} \)
61 \( 1 + 8.93T + 61T^{2} \)
67 \( 1 - 10.6T + 67T^{2} \)
71 \( 1 - 3.73T + 71T^{2} \)
73 \( 1 - 13.1T + 73T^{2} \)
79 \( 1 - 5.15T + 79T^{2} \)
83 \( 1 + 5.24T + 83T^{2} \)
89 \( 1 - 0.528T + 89T^{2} \)
97 \( 1 + 5.53T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78306540483682981157787319508, −7.33313907025068002798549871633, −6.56736024138772401878226536773, −5.56014506910103126203240073528, −5.24715207411849469716525166071, −4.87011209395745779546492630117, −3.44051186112389900536376740720, −2.74459654278748793104497587073, −1.83824298721347343724993657736, −0.39934263734339154603177015109, 0.39934263734339154603177015109, 1.83824298721347343724993657736, 2.74459654278748793104497587073, 3.44051186112389900536376740720, 4.87011209395745779546492630117, 5.24715207411849469716525166071, 5.56014506910103126203240073528, 6.56736024138772401878226536773, 7.33313907025068002798549871633, 7.78306540483682981157787319508

Graph of the $Z$-function along the critical line