L(s) = 1 | + (0.573 + 0.819i)2-s + (−0.342 + 0.939i)4-s + (−3.66 − 0.320i)5-s + (−1.19 + 0.999i)7-s + (−0.965 + 0.258i)8-s + (−1.83 − 3.18i)10-s + (1.53 − 2.65i)11-s + (4.68 − 2.18i)13-s + (−1.50 − 0.402i)14-s + (−0.766 − 0.642i)16-s + (−3.89 − 1.81i)17-s + (−3.65 − 2.55i)19-s + (1.55 − 3.33i)20-s + (3.05 − 0.267i)22-s + (1.44 − 5.38i)23-s + ⋯ |
L(s) = 1 | + (0.405 + 0.579i)2-s + (−0.171 + 0.469i)4-s + (−1.63 − 0.143i)5-s + (−0.450 + 0.377i)7-s + (−0.341 + 0.0915i)8-s + (−0.581 − 1.00i)10-s + (0.462 − 0.801i)11-s + (1.29 − 0.605i)13-s + (−0.401 − 0.107i)14-s + (−0.191 − 0.160i)16-s + (−0.945 − 0.440i)17-s + (−0.837 − 0.586i)19-s + (0.347 − 0.744i)20-s + (0.651 − 0.0570i)22-s + (0.300 − 1.12i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.557109 - 0.424610i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.557109 - 0.424610i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.573 - 0.819i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (5.10 + 3.31i)T \) |
good | 5 | \( 1 + (3.66 + 0.320i)T + (4.92 + 0.868i)T^{2} \) |
| 7 | \( 1 + (1.19 - 0.999i)T + (1.21 - 6.89i)T^{2} \) |
| 11 | \( 1 + (-1.53 + 2.65i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.68 + 2.18i)T + (8.35 - 9.95i)T^{2} \) |
| 17 | \( 1 + (3.89 + 1.81i)T + (10.9 + 13.0i)T^{2} \) |
| 19 | \( 1 + (3.65 + 2.55i)T + (6.49 + 17.8i)T^{2} \) |
| 23 | \( 1 + (-1.44 + 5.38i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (1.43 + 5.35i)T + (-25.1 + 14.5i)T^{2} \) |
| 31 | \( 1 + (-0.808 - 0.808i)T + 31iT^{2} \) |
| 41 | \( 1 + (4.40 + 1.60i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-2.81 + 2.81i)T - 43iT^{2} \) |
| 47 | \( 1 + (6.67 - 3.85i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.78 - 2.12i)T + (-9.20 - 52.1i)T^{2} \) |
| 59 | \( 1 + (-0.929 - 10.6i)T + (-58.1 + 10.2i)T^{2} \) |
| 61 | \( 1 + (2.73 + 5.86i)T + (-39.2 + 46.7i)T^{2} \) |
| 67 | \( 1 + (-6.26 - 7.46i)T + (-11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (11.1 - 1.96i)T + (66.7 - 24.2i)T^{2} \) |
| 73 | \( 1 + 2.09iT - 73T^{2} \) |
| 79 | \( 1 + (-1.21 + 13.8i)T + (-77.7 - 13.7i)T^{2} \) |
| 83 | \( 1 + (2.26 + 6.23i)T + (-63.5 + 53.3i)T^{2} \) |
| 89 | \( 1 + (-14.6 + 1.28i)T + (87.6 - 15.4i)T^{2} \) |
| 97 | \( 1 + (14.4 + 3.88i)T + (84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64962786519028941311719859693, −8.810259852736112819754800201473, −8.724081585318781348737570135543, −7.72049989634397983902838252928, −6.70262286894103959514628691243, −6.00867885663490154688773003147, −4.64192255842873129245213693433, −3.87137283171039491305086873754, −2.96197543928440508210099601630, −0.33695527506854071193696059321,
1.62666793621757949924902992525, 3.51441091780953809708412053834, 3.86542591107420790973095992450, 4.82378878020773330176858287130, 6.43154005869550136077081712146, 7.01267899423937689385368309989, 8.195107761778776858404760843338, 8.929744288781685510495790535892, 10.03756460702319004413019172353, 11.04025842205276594166082861424