L(s) = 1 | + (−0.573 + 0.819i)2-s + (−0.342 − 0.939i)4-s + (3.55 − 0.310i)5-s + (3.11 + 2.61i)7-s + (0.965 + 0.258i)8-s + (−1.78 + 3.08i)10-s + (−0.00168 − 0.00292i)11-s + (1.48 + 0.692i)13-s + (−3.92 + 1.05i)14-s + (−0.766 + 0.642i)16-s + (−6.72 + 3.13i)17-s + (5.40 − 3.78i)19-s + (−1.50 − 3.23i)20-s + (0.00335 + 0.000293i)22-s + (−1.87 − 7.01i)23-s + ⋯ |
L(s) = 1 | + (−0.405 + 0.579i)2-s + (−0.171 − 0.469i)4-s + (1.58 − 0.138i)5-s + (1.17 + 0.987i)7-s + (0.341 + 0.0915i)8-s + (−0.563 + 0.976i)10-s + (−0.000508 − 0.000880i)11-s + (0.411 + 0.192i)13-s + (−1.04 + 0.281i)14-s + (−0.191 + 0.160i)16-s + (−1.62 + 0.760i)17-s + (1.24 − 0.868i)19-s + (−0.336 − 0.722i)20-s + (0.000716 + 6.26e−5i)22-s + (−0.391 − 1.46i)23-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)(0.604−0.796i)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)(0.604−0.796i)Λ(1−s)
Degree: |
2 |
Conductor: |
666
= 2⋅32⋅37
|
Sign: |
0.604−0.796i
|
Analytic conductor: |
5.31803 |
Root analytic conductor: |
2.30608 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ666(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 666, ( :1/2), 0.604−0.796i)
|
Particular Values
L(1) |
≈ |
1.57618+0.782060i |
L(21) |
≈ |
1.57618+0.782060i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.573−0.819i)T |
| 3 | 1 |
| 37 | 1+(−5.96+1.17i)T |
good | 5 | 1+(−3.55+0.310i)T+(4.92−0.868i)T2 |
| 7 | 1+(−3.11−2.61i)T+(1.21+6.89i)T2 |
| 11 | 1+(0.00168+0.00292i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−1.48−0.692i)T+(8.35+9.95i)T2 |
| 17 | 1+(6.72−3.13i)T+(10.9−13.0i)T2 |
| 19 | 1+(−5.40+3.78i)T+(6.49−17.8i)T2 |
| 23 | 1+(1.87+7.01i)T+(−19.9+11.5i)T2 |
| 29 | 1+(−0.451+1.68i)T+(−25.1−14.5i)T2 |
| 31 | 1+(6.34−6.34i)T−31iT2 |
| 41 | 1+(8.09−2.94i)T+(31.4−26.3i)T2 |
| 43 | 1+(3.92+3.92i)T+43iT2 |
| 47 | 1+(−0.830−0.479i)T+(23.5+40.7i)T2 |
| 53 | 1+(−7.38−8.80i)T+(−9.20+52.1i)T2 |
| 59 | 1+(−0.918+10.4i)T+(−58.1−10.2i)T2 |
| 61 | 1+(4.66−10.0i)T+(−39.2−46.7i)T2 |
| 67 | 1+(−6.84+8.15i)T+(−11.6−65.9i)T2 |
| 71 | 1+(6.56+1.15i)T+(66.7+24.2i)T2 |
| 73 | 1−1.04iT−73T2 |
| 79 | 1+(−0.482−5.51i)T+(−77.7+13.7i)T2 |
| 83 | 1+(0.623−1.71i)T+(−63.5−53.3i)T2 |
| 89 | 1+(−3.68−0.322i)T+(87.6+15.4i)T2 |
| 97 | 1+(4.41−1.18i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.57418565574738507736876536882, −9.523883991506982607859041747288, −8.812557352648763362421677493967, −8.393105638659608257067840246812, −6.95451118930837819917732903005, −6.14795279714029261345233328330, −5.36463154055608813778803278783, −4.61369635983886884646666836768, −2.43528158632527716350426814694, −1.60339078156321831662609827736,
1.33119681068941289755539490713, 2.16025199402190346911856046325, 3.65331563545021361257802836970, 4.89671110800636781151159922479, 5.77457167000576629906680353412, 7.02179621023483124388654621295, 7.81397691307231715227903780406, 8.905857876144214569354396725861, 9.706440157704821836141107902373, 10.28213042592635947888343937092