L(s) = 1 | + (0.573 − 0.819i)2-s + (−0.342 − 0.939i)4-s + (0.718 − 0.0628i)5-s + (−2.07 − 1.73i)7-s + (−0.965 − 0.258i)8-s + (0.360 − 0.624i)10-s + (−2.14 − 3.71i)11-s + (0.0350 + 0.0163i)13-s + (−2.61 + 0.699i)14-s + (−0.766 + 0.642i)16-s + (1.26 − 0.588i)17-s + (−1.15 + 0.812i)19-s + (−0.304 − 0.653i)20-s + (−4.27 − 0.374i)22-s + (−1.21 − 4.54i)23-s + ⋯ |
L(s) = 1 | + (0.405 − 0.579i)2-s + (−0.171 − 0.469i)4-s + (0.321 − 0.0280i)5-s + (−0.782 − 0.656i)7-s + (−0.341 − 0.0915i)8-s + (0.113 − 0.197i)10-s + (−0.647 − 1.12i)11-s + (0.00973 + 0.00453i)13-s + (−0.697 + 0.186i)14-s + (−0.191 + 0.160i)16-s + (0.306 − 0.142i)17-s + (−0.266 + 0.186i)19-s + (−0.0681 − 0.146i)20-s + (−0.911 − 0.0797i)22-s + (−0.253 − 0.947i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.833 + 0.552i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.833 + 0.552i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.379355 - 1.25910i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.379355 - 1.25910i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.573 + 0.819i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-6.02 - 0.856i)T \) |
good | 5 | \( 1 + (-0.718 + 0.0628i)T + (4.92 - 0.868i)T^{2} \) |
| 7 | \( 1 + (2.07 + 1.73i)T + (1.21 + 6.89i)T^{2} \) |
| 11 | \( 1 + (2.14 + 3.71i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.0350 - 0.0163i)T + (8.35 + 9.95i)T^{2} \) |
| 17 | \( 1 + (-1.26 + 0.588i)T + (10.9 - 13.0i)T^{2} \) |
| 19 | \( 1 + (1.15 - 0.812i)T + (6.49 - 17.8i)T^{2} \) |
| 23 | \( 1 + (1.21 + 4.54i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (-2.18 + 8.15i)T + (-25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (3.19 - 3.19i)T - 31iT^{2} \) |
| 41 | \( 1 + (-8.42 + 3.06i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (0.673 + 0.673i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.04 + 1.18i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.385 - 0.459i)T + (-9.20 + 52.1i)T^{2} \) |
| 59 | \( 1 + (0.273 - 3.12i)T + (-58.1 - 10.2i)T^{2} \) |
| 61 | \( 1 + (4.73 - 10.1i)T + (-39.2 - 46.7i)T^{2} \) |
| 67 | \( 1 + (-5.48 + 6.53i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (0.759 + 0.133i)T + (66.7 + 24.2i)T^{2} \) |
| 73 | \( 1 - 9.36iT - 73T^{2} \) |
| 79 | \( 1 + (0.124 + 1.41i)T + (-77.7 + 13.7i)T^{2} \) |
| 83 | \( 1 + (-2.84 + 7.81i)T + (-63.5 - 53.3i)T^{2} \) |
| 89 | \( 1 + (-10.6 - 0.934i)T + (87.6 + 15.4i)T^{2} \) |
| 97 | \( 1 + (2.87 - 0.769i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.25815780684032392923860347175, −9.596855950860622108359529558232, −8.529212320816110626513967328066, −7.54272677911415530319705309578, −6.28087909796783515221999853079, −5.72352761421925329871075471532, −4.40181976366022348176718995287, −3.44229936301495829432917165727, −2.40072311555419776259020701676, −0.59127386009171844857832905370,
2.16434923857068970880821172225, 3.32773859822444630355365477982, 4.58945339959195572791038465765, 5.57716268526914867916106216980, 6.29034338394485242944685253639, 7.30802583102290765606355210880, 8.058219689095728063669719051624, 9.323558892969312692197464848309, 9.703503496841020575271671847097, 10.83578243249831495543331696342