Properties

Label 2-666-111.17-c1-0-12
Degree $2$
Conductor $666$
Sign $-0.833 + 0.552i$
Analytic cond. $5.31803$
Root an. cond. $2.30608$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.573 − 0.819i)2-s + (−0.342 − 0.939i)4-s + (0.718 − 0.0628i)5-s + (−2.07 − 1.73i)7-s + (−0.965 − 0.258i)8-s + (0.360 − 0.624i)10-s + (−2.14 − 3.71i)11-s + (0.0350 + 0.0163i)13-s + (−2.61 + 0.699i)14-s + (−0.766 + 0.642i)16-s + (1.26 − 0.588i)17-s + (−1.15 + 0.812i)19-s + (−0.304 − 0.653i)20-s + (−4.27 − 0.374i)22-s + (−1.21 − 4.54i)23-s + ⋯
L(s)  = 1  + (0.405 − 0.579i)2-s + (−0.171 − 0.469i)4-s + (0.321 − 0.0280i)5-s + (−0.782 − 0.656i)7-s + (−0.341 − 0.0915i)8-s + (0.113 − 0.197i)10-s + (−0.647 − 1.12i)11-s + (0.00973 + 0.00453i)13-s + (−0.697 + 0.186i)14-s + (−0.191 + 0.160i)16-s + (0.306 − 0.142i)17-s + (−0.266 + 0.186i)19-s + (−0.0681 − 0.146i)20-s + (−0.911 − 0.0797i)22-s + (−0.253 − 0.947i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.833 + 0.552i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.833 + 0.552i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(666\)    =    \(2 \cdot 3^{2} \cdot 37\)
Sign: $-0.833 + 0.552i$
Analytic conductor: \(5.31803\)
Root analytic conductor: \(2.30608\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{666} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 666,\ (\ :1/2),\ -0.833 + 0.552i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.379355 - 1.25910i\)
\(L(\frac12)\) \(\approx\) \(0.379355 - 1.25910i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.573 + 0.819i)T \)
3 \( 1 \)
37 \( 1 + (-6.02 - 0.856i)T \)
good5 \( 1 + (-0.718 + 0.0628i)T + (4.92 - 0.868i)T^{2} \)
7 \( 1 + (2.07 + 1.73i)T + (1.21 + 6.89i)T^{2} \)
11 \( 1 + (2.14 + 3.71i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.0350 - 0.0163i)T + (8.35 + 9.95i)T^{2} \)
17 \( 1 + (-1.26 + 0.588i)T + (10.9 - 13.0i)T^{2} \)
19 \( 1 + (1.15 - 0.812i)T + (6.49 - 17.8i)T^{2} \)
23 \( 1 + (1.21 + 4.54i)T + (-19.9 + 11.5i)T^{2} \)
29 \( 1 + (-2.18 + 8.15i)T + (-25.1 - 14.5i)T^{2} \)
31 \( 1 + (3.19 - 3.19i)T - 31iT^{2} \)
41 \( 1 + (-8.42 + 3.06i)T + (31.4 - 26.3i)T^{2} \)
43 \( 1 + (0.673 + 0.673i)T + 43iT^{2} \)
47 \( 1 + (2.04 + 1.18i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-0.385 - 0.459i)T + (-9.20 + 52.1i)T^{2} \)
59 \( 1 + (0.273 - 3.12i)T + (-58.1 - 10.2i)T^{2} \)
61 \( 1 + (4.73 - 10.1i)T + (-39.2 - 46.7i)T^{2} \)
67 \( 1 + (-5.48 + 6.53i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (0.759 + 0.133i)T + (66.7 + 24.2i)T^{2} \)
73 \( 1 - 9.36iT - 73T^{2} \)
79 \( 1 + (0.124 + 1.41i)T + (-77.7 + 13.7i)T^{2} \)
83 \( 1 + (-2.84 + 7.81i)T + (-63.5 - 53.3i)T^{2} \)
89 \( 1 + (-10.6 - 0.934i)T + (87.6 + 15.4i)T^{2} \)
97 \( 1 + (2.87 - 0.769i)T + (84.0 - 48.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25815780684032392923860347175, −9.596855950860622108359529558232, −8.529212320816110626513967328066, −7.54272677911415530319705309578, −6.28087909796783515221999853079, −5.72352761421925329871075471532, −4.40181976366022348176718995287, −3.44229936301495829432917165727, −2.40072311555419776259020701676, −0.59127386009171844857832905370, 2.16434923857068970880821172225, 3.32773859822444630355365477982, 4.58945339959195572791038465765, 5.57716268526914867916106216980, 6.29034338394485242944685253639, 7.30802583102290765606355210880, 8.058219689095728063669719051624, 9.323558892969312692197464848309, 9.703503496841020575271671847097, 10.83578243249831495543331696342

Graph of the $Z$-function along the critical line