L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.866 + 0.499i)4-s + (−0.448 + 1.67i)5-s + (0.633 + 1.09i)7-s + (0.707 + 0.707i)8-s + 1.73·10-s − 2.44·11-s + (0.366 + 0.0980i)13-s + (0.896 − 0.896i)14-s + (0.500 − 0.866i)16-s + (−6.24 + 1.67i)17-s + (−5.09 − 1.36i)19-s + (−0.448 − 1.67i)20-s + (0.633 + 2.36i)22-s + (−2.44 − 2.44i)23-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (−0.433 + 0.249i)4-s + (−0.200 + 0.748i)5-s + (0.239 + 0.415i)7-s + (0.249 + 0.249i)8-s + 0.547·10-s − 0.738·11-s + (0.101 + 0.0272i)13-s + (0.239 − 0.239i)14-s + (0.125 − 0.216i)16-s + (−1.51 + 0.405i)17-s + (−1.16 − 0.313i)19-s + (−0.100 − 0.374i)20-s + (0.135 + 0.504i)22-s + (−0.510 − 0.510i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.316 - 0.948i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.316 - 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.318253 + 0.441462i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.318253 + 0.441462i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (4.69 - 3.86i)T \) |
good | 5 | \( 1 + (0.448 - 1.67i)T + (-4.33 - 2.5i)T^{2} \) |
| 7 | \( 1 + (-0.633 - 1.09i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 2.44T + 11T^{2} \) |
| 13 | \( 1 + (-0.366 - 0.0980i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (6.24 - 1.67i)T + (14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (5.09 + 1.36i)T + (16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (2.44 + 2.44i)T + 23iT^{2} \) |
| 29 | \( 1 + (6.12 - 6.12i)T - 29iT^{2} \) |
| 31 | \( 1 + (-5.73 - 5.73i)T + 31iT^{2} \) |
| 41 | \( 1 + (2.89 + 5.01i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.267 + 0.267i)T - 43iT^{2} \) |
| 47 | \( 1 - 4.24iT - 47T^{2} \) |
| 53 | \( 1 + (-5.22 - 3.01i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.79 + 1.55i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (2.86 - 10.6i)T + (-52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (3.63 - 2.09i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.12 - 1.22i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 6.39iT - 73T^{2} \) |
| 79 | \( 1 + (3.36 + 0.901i)T + (68.4 + 39.5i)T^{2} \) |
| 83 | \( 1 + (-3.10 - 1.79i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.10 - 4.12i)T + (-77.0 + 44.5i)T^{2} \) |
| 97 | \( 1 + (-0.366 + 0.366i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64400117104226275108570621856, −10.35354839015437447487699223493, −8.832852237725522020241453721344, −8.564630022989225841198221621650, −7.26537866432331529632725949643, −6.44902257247318876356956554427, −5.15693866801822024287442296485, −4.13494628923853959211672468714, −2.91476556795921281214558140393, −1.99381195249715373085267894109,
0.29157420529835669830939098201, 2.15202898439888007987714522803, 4.05111291404073753373981057168, 4.71618941877889700905297065031, 5.78690164049919864103163838394, 6.74674857767966815821958254550, 7.78095735257748501369530617884, 8.384689489570842420830098925828, 9.198049493956212662487223625003, 10.15811084900956790462747297145