Properties

Label 2-666-1.1-c1-0-6
Degree $2$
Conductor $666$
Sign $1$
Analytic cond. $5.31803$
Root an. cond. $2.30608$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2.30·5-s − 2.60·7-s + 8-s + 2.30·10-s + 2.30·11-s + 1.30·13-s − 2.60·14-s + 16-s + 6·17-s + 2·19-s + 2.30·20-s + 2.30·22-s − 3.90·23-s + 0.302·25-s + 1.30·26-s − 2.60·28-s + 3.90·29-s − 0.302·31-s + 32-s + 6·34-s − 6·35-s + 37-s + 2·38-s + 2.30·40-s − 9.90·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 1.02·5-s − 0.984·7-s + 0.353·8-s + 0.728·10-s + 0.694·11-s + 0.361·13-s − 0.696·14-s + 0.250·16-s + 1.45·17-s + 0.458·19-s + 0.514·20-s + 0.490·22-s − 0.814·23-s + 0.0605·25-s + 0.255·26-s − 0.492·28-s + 0.725·29-s − 0.0543·31-s + 0.176·32-s + 1.02·34-s − 1.01·35-s + 0.164·37-s + 0.324·38-s + 0.364·40-s − 1.54·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(666\)    =    \(2 \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(5.31803\)
Root analytic conductor: \(2.30608\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 666,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.626930209\)
\(L(\frac12)\) \(\approx\) \(2.626930209\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
37 \( 1 - T \)
good5 \( 1 - 2.30T + 5T^{2} \)
7 \( 1 + 2.60T + 7T^{2} \)
11 \( 1 - 2.30T + 11T^{2} \)
13 \( 1 - 1.30T + 13T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 - 2T + 19T^{2} \)
23 \( 1 + 3.90T + 23T^{2} \)
29 \( 1 - 3.90T + 29T^{2} \)
31 \( 1 + 0.302T + 31T^{2} \)
41 \( 1 + 9.90T + 41T^{2} \)
43 \( 1 - 0.605T + 43T^{2} \)
47 \( 1 + 4.60T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 10.6T + 59T^{2} \)
61 \( 1 - 7.51T + 61T^{2} \)
67 \( 1 + 3.51T + 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 12.3T + 73T^{2} \)
79 \( 1 - 9.11T + 79T^{2} \)
83 \( 1 + 2.78T + 83T^{2} \)
89 \( 1 - 9.21T + 89T^{2} \)
97 \( 1 + 16.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.21504624504124819813074099459, −9.941106386784632519402725495147, −8.961346271187487164991698361971, −7.74028955646227738291857137000, −6.58726137798134571383683772350, −6.05158282859351272481720035666, −5.21146575159579199104920070104, −3.82255826082229337591182372438, −2.95468931311390124516057995731, −1.51849191635781980303548251648, 1.51849191635781980303548251648, 2.95468931311390124516057995731, 3.82255826082229337591182372438, 5.21146575159579199104920070104, 6.05158282859351272481720035666, 6.58726137798134571383683772350, 7.74028955646227738291857137000, 8.961346271187487164991698361971, 9.941106386784632519402725495147, 10.21504624504124819813074099459

Graph of the $Z$-function along the critical line