L(s) = 1 | + 2-s + 4-s − 2·5-s + 8-s − 2·10-s + 4·11-s + 6·13-s + 16-s − 6·17-s + 8·19-s − 2·20-s + 4·22-s − 25-s + 6·26-s + 6·29-s + 4·31-s + 32-s − 6·34-s + 37-s + 8·38-s − 2·40-s + 6·41-s − 8·43-s + 4·44-s − 8·47-s − 7·49-s − 50-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s + 1.20·11-s + 1.66·13-s + 1/4·16-s − 1.45·17-s + 1.83·19-s − 0.447·20-s + 0.852·22-s − 1/5·25-s + 1.17·26-s + 1.11·29-s + 0.718·31-s + 0.176·32-s − 1.02·34-s + 0.164·37-s + 1.29·38-s − 0.316·40-s + 0.937·41-s − 1.21·43-s + 0.603·44-s − 1.16·47-s − 49-s − 0.141·50-s + ⋯ |
Λ(s)=(=(666s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(666s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.224657303 |
L(21) |
≈ |
2.224657303 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 37 | 1−T |
good | 5 | 1+2T+pT2 |
| 7 | 1+pT2 |
| 11 | 1−4T+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−8T+pT2 |
| 23 | 1+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−4T+pT2 |
| 41 | 1−6T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1−4T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1+12T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1+12T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89285735420782500834690215413, −9.633028066442567234094648512935, −8.674805511220596933018409082872, −7.87134380463197584693994089861, −6.73345927651178301509646905181, −6.17635572856702991761729027556, −4.79961428857637427378957471382, −3.94279778871499007659572657862, −3.16142223901297670850098979789, −1.32659579994960613230952815319,
1.32659579994960613230952815319, 3.16142223901297670850098979789, 3.94279778871499007659572657862, 4.79961428857637427378957471382, 6.17635572856702991761729027556, 6.73345927651178301509646905181, 7.87134380463197584693994089861, 8.674805511220596933018409082872, 9.633028066442567234094648512935, 10.89285735420782500834690215413