Properties

Label 2-666-1.1-c1-0-3
Degree $2$
Conductor $666$
Sign $1$
Analytic cond. $5.31803$
Root an. cond. $2.30608$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s + 4·11-s + 6·13-s + 16-s − 6·17-s + 8·19-s − 2·20-s + 4·22-s − 25-s + 6·26-s + 6·29-s + 4·31-s + 32-s − 6·34-s + 37-s + 8·38-s − 2·40-s + 6·41-s − 8·43-s + 4·44-s − 8·47-s − 7·49-s − 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s + 1.20·11-s + 1.66·13-s + 1/4·16-s − 1.45·17-s + 1.83·19-s − 0.447·20-s + 0.852·22-s − 1/5·25-s + 1.17·26-s + 1.11·29-s + 0.718·31-s + 0.176·32-s − 1.02·34-s + 0.164·37-s + 1.29·38-s − 0.316·40-s + 0.937·41-s − 1.21·43-s + 0.603·44-s − 1.16·47-s − 49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(666\)    =    \(2 \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(5.31803\)
Root analytic conductor: \(2.30608\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 666,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.224657303\)
\(L(\frac12)\) \(\approx\) \(2.224657303\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
37 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 8 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + 12 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89285735420782500834690215413, −9.633028066442567234094648512935, −8.674805511220596933018409082872, −7.87134380463197584693994089861, −6.73345927651178301509646905181, −6.17635572856702991761729027556, −4.79961428857637427378957471382, −3.94279778871499007659572657862, −3.16142223901297670850098979789, −1.32659579994960613230952815319, 1.32659579994960613230952815319, 3.16142223901297670850098979789, 3.94279778871499007659572657862, 4.79961428857637427378957471382, 6.17635572856702991761729027556, 6.73345927651178301509646905181, 7.87134380463197584693994089861, 8.674805511220596933018409082872, 9.633028066442567234094648512935, 10.89285735420782500834690215413

Graph of the $Z$-function along the critical line