Properties

Label 2-666-1.1-c1-0-0
Degree $2$
Conductor $666$
Sign $1$
Analytic cond. $5.31803$
Root an. cond. $2.30608$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3.85·5-s − 3.23·7-s − 8-s + 3.85·10-s + 1.38·11-s − 2.85·13-s + 3.23·14-s + 16-s + 4.47·17-s + 4.47·19-s − 3.85·20-s − 1.38·22-s − 2.85·23-s + 9.85·25-s + 2.85·26-s − 3.23·28-s + 9.32·29-s + 7.38·31-s − 32-s − 4.47·34-s + 12.4·35-s − 37-s − 4.47·38-s + 3.85·40-s − 9.61·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.72·5-s − 1.22·7-s − 0.353·8-s + 1.21·10-s + 0.416·11-s − 0.791·13-s + 0.864·14-s + 0.250·16-s + 1.08·17-s + 1.02·19-s − 0.861·20-s − 0.294·22-s − 0.595·23-s + 1.97·25-s + 0.559·26-s − 0.611·28-s + 1.73·29-s + 1.32·31-s − 0.176·32-s − 0.766·34-s + 2.10·35-s − 0.164·37-s − 0.725·38-s + 0.609·40-s − 1.50·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(666\)    =    \(2 \cdot 3^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(5.31803\)
Root analytic conductor: \(2.30608\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 666,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5772984426\)
\(L(\frac12)\) \(\approx\) \(0.5772984426\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
37 \( 1 + T \)
good5 \( 1 + 3.85T + 5T^{2} \)
7 \( 1 + 3.23T + 7T^{2} \)
11 \( 1 - 1.38T + 11T^{2} \)
13 \( 1 + 2.85T + 13T^{2} \)
17 \( 1 - 4.47T + 17T^{2} \)
19 \( 1 - 4.47T + 19T^{2} \)
23 \( 1 + 2.85T + 23T^{2} \)
29 \( 1 - 9.32T + 29T^{2} \)
31 \( 1 - 7.38T + 31T^{2} \)
41 \( 1 + 9.61T + 41T^{2} \)
43 \( 1 + 5.23T + 43T^{2} \)
47 \( 1 - 1.23T + 47T^{2} \)
53 \( 1 + 0.472T + 53T^{2} \)
59 \( 1 - 4.76T + 59T^{2} \)
61 \( 1 - 10.6T + 61T^{2} \)
67 \( 1 - 1.09T + 67T^{2} \)
71 \( 1 + 2.94T + 71T^{2} \)
73 \( 1 - 7.09T + 73T^{2} \)
79 \( 1 + 8.56T + 79T^{2} \)
83 \( 1 - 14.4T + 83T^{2} \)
89 \( 1 - 1.52T + 89T^{2} \)
97 \( 1 + 0.472T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.16084379052051402647932147893, −9.879949479711905537275271281386, −8.638109233435591597672701580597, −7.956053490775710793649126002140, −7.14044343528659801100496828380, −6.43945258485775047281224833849, −4.94521540255671770583730319194, −3.65445389378952927062629006311, −2.96807548835528318907132220424, −0.70293052423832835508495182842, 0.70293052423832835508495182842, 2.96807548835528318907132220424, 3.65445389378952927062629006311, 4.94521540255671770583730319194, 6.43945258485775047281224833849, 7.14044343528659801100496828380, 7.956053490775710793649126002140, 8.638109233435591597672701580597, 9.879949479711905537275271281386, 10.16084379052051402647932147893

Graph of the $Z$-function along the critical line