L(s) = 1 | + (−0.809 + 0.587i)2-s + (−0.751 − 1.56i)3-s + (0.309 − 0.951i)4-s + (1.56 − 2.14i)5-s + (1.52 + 0.820i)6-s + (1.56 + 0.507i)7-s + (0.309 + 0.951i)8-s + (−1.86 + 2.34i)9-s + 2.65i·10-s + (−2.77 − 1.81i)11-s + (−1.71 + 0.232i)12-s + (0.885 + 1.21i)13-s + (−1.56 + 0.507i)14-s + (−4.52 − 0.820i)15-s + (−0.809 − 0.587i)16-s + (5.49 + 3.99i)17-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (−0.434 − 0.900i)3-s + (0.154 − 0.475i)4-s + (0.697 − 0.960i)5-s + (0.622 + 0.334i)6-s + (0.589 + 0.191i)7-s + (0.109 + 0.336i)8-s + (−0.623 + 0.782i)9-s + 0.839i·10-s + (−0.837 − 0.546i)11-s + (−0.495 + 0.0671i)12-s + (0.245 + 0.338i)13-s + (−0.417 + 0.135i)14-s + (−1.16 − 0.211i)15-s + (−0.202 − 0.146i)16-s + (1.33 + 0.968i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.772 + 0.635i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.772 + 0.635i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.648965 - 0.232583i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.648965 - 0.232583i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 - 0.587i)T \) |
| 3 | \( 1 + (0.751 + 1.56i)T \) |
| 11 | \( 1 + (2.77 + 1.81i)T \) |
good | 5 | \( 1 + (-1.56 + 2.14i)T + (-1.54 - 4.75i)T^{2} \) |
| 7 | \( 1 + (-1.56 - 0.507i)T + (5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-0.885 - 1.21i)T + (-4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-5.49 - 3.99i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (5.21 - 1.69i)T + (15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 4.78iT - 23T^{2} \) |
| 29 | \( 1 + (-0.143 + 0.441i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-4.20 + 3.05i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.311 + 0.957i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.486 + 1.49i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 3.42iT - 43T^{2} \) |
| 47 | \( 1 + (9.52 - 3.09i)T + (38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (5.77 + 7.94i)T + (-16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-5.81 - 1.88i)T + (47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (8.17 - 11.2i)T + (-18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 11.7T + 67T^{2} \) |
| 71 | \( 1 + (0.527 - 0.726i)T + (-21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (4.40 + 1.42i)T + (59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (1.86 + 2.57i)T + (-24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-1.51 - 1.10i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 12.8iT - 89T^{2} \) |
| 97 | \( 1 + (-2.90 + 2.11i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.70366157555010527012196976507, −13.51847315894141264915619263528, −12.66833266844377131423947824769, −11.39871236328205606335212137112, −10.13796602464428190461227398664, −8.574429501177036302357977205331, −7.88012044019202129765123307645, −6.12241772040636747407662715496, −5.27126503527407830053853240928, −1.62919667802991226540446627829,
2.86278413742470247620087148853, 4.88307782259944217957795320737, 6.52148379643624095244332515404, 8.133890211785773103627799536680, 9.721196043601058441613062118654, 10.42804416494141148442977144106, 11.16204225147927774367138250140, 12.52065636409206878970048416382, 14.12218880618046781479094613260, 15.00429619402193627374009904477