L(s) = 1 | + (−0.809 − 0.587i)2-s + (1.25 − 1.19i)3-s + (0.309 + 0.951i)4-s + (−0.442 − 0.609i)5-s + (−1.71 + 0.232i)6-s + (−0.442 + 0.143i)7-s + (0.309 − 0.951i)8-s + (0.133 − 2.99i)9-s + 0.753i·10-s + (2.46 + 2.21i)11-s + (1.52 + 0.820i)12-s + (−3.12 + 4.29i)13-s + (0.442 + 0.143i)14-s + (−1.28 − 0.232i)15-s + (−0.809 + 0.587i)16-s + (−2.99 + 2.17i)17-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.722 − 0.691i)3-s + (0.154 + 0.475i)4-s + (−0.197 − 0.272i)5-s + (−0.700 + 0.0950i)6-s + (−0.167 + 0.0543i)7-s + (0.109 − 0.336i)8-s + (0.0445 − 0.999i)9-s + 0.238i·10-s + (0.744 + 0.668i)11-s + (0.440 + 0.236i)12-s + (−0.865 + 1.19i)13-s + (0.118 + 0.0384i)14-s + (−0.331 − 0.0600i)15-s + (−0.202 + 0.146i)16-s + (−0.726 + 0.527i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.556 + 0.830i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.556 + 0.830i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.723811 - 0.386273i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.723811 - 0.386273i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 3 | \( 1 + (-1.25 + 1.19i)T \) |
| 11 | \( 1 + (-2.46 - 2.21i)T \) |
good | 5 | \( 1 + (0.442 + 0.609i)T + (-1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.442 - 0.143i)T + (5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (3.12 - 4.29i)T + (-4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.99 - 2.17i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-2.02 - 0.659i)T + (15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 6.24iT - 23T^{2} \) |
| 29 | \( 1 + (3.09 + 9.53i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.96 - 2.15i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.16 + 6.66i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (0.0135 - 0.0416i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 5.49iT - 43T^{2} \) |
| 47 | \( 1 + (3.03 + 0.987i)T + (38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (3.00 - 4.13i)T + (-16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-11.0 + 3.59i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-2.31 - 3.19i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 6.70T + 67T^{2} \) |
| 71 | \( 1 + (0.527 + 0.726i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-7.32 + 2.38i)T + (59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (2.34 - 3.22i)T + (-24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-8.76 + 6.36i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 6.48iT - 89T^{2} \) |
| 97 | \( 1 + (-2.13 - 1.55i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.58455401121154082218733484931, −13.50164486335791337930569255554, −12.30074854806150342705677271106, −11.64268384177504019286407389414, −9.752194215935985454467491864550, −9.023450608010200502969407141658, −7.71354821013588223397333980671, −6.64543745486974754542462055427, −4.05216809851475919153278365587, −2.03520195845549829064966717141,
3.09880188200855684634985287238, 5.03771162290902244135989256353, 6.89138442137476611124330966393, 8.181918584120871000769405975707, 9.209866538493429171187771429470, 10.26886621296724380584709766928, 11.32058490802544789379424567193, 13.07686830837794254921162718986, 14.38947854052996128579277217600, 15.02151717832383531534504776874