L(s) = 1 | − 4.16·5-s − 7-s + 4.71·11-s + 13-s + 0.450·17-s − 0.103·19-s − 4.42·23-s + 12.3·25-s − 1.89·29-s + 2.55·31-s + 4.16·35-s − 0.450·37-s − 4.26·41-s + 4.42·43-s − 8.61·47-s + 49-s − 12.6·53-s − 19.6·55-s − 7.16·59-s − 14.2·61-s − 4.16·65-s + 12.8·67-s + 7.16·71-s + 1.57·73-s − 4.71·77-s − 2.34·79-s + 8.93·83-s + ⋯ |
L(s) = 1 | − 1.86·5-s − 0.377·7-s + 1.42·11-s + 0.277·13-s + 0.109·17-s − 0.0236·19-s − 0.923·23-s + 2.46·25-s − 0.352·29-s + 0.458·31-s + 0.703·35-s − 0.0740·37-s − 0.666·41-s + 0.675·43-s − 1.25·47-s + 0.142·49-s − 1.74·53-s − 2.64·55-s − 0.933·59-s − 1.81·61-s − 0.516·65-s + 1.57·67-s + 0.850·71-s + 0.183·73-s − 0.537·77-s − 0.264·79-s + 0.981·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.048325457\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.048325457\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 - T \) |
good | 5 | \( 1 + 4.16T + 5T^{2} \) |
| 11 | \( 1 - 4.71T + 11T^{2} \) |
| 17 | \( 1 - 0.450T + 17T^{2} \) |
| 19 | \( 1 + 0.103T + 19T^{2} \) |
| 23 | \( 1 + 4.42T + 23T^{2} \) |
| 29 | \( 1 + 1.89T + 29T^{2} \) |
| 31 | \( 1 - 2.55T + 31T^{2} \) |
| 37 | \( 1 + 0.450T + 37T^{2} \) |
| 41 | \( 1 + 4.26T + 41T^{2} \) |
| 43 | \( 1 - 4.42T + 43T^{2} \) |
| 47 | \( 1 + 8.61T + 47T^{2} \) |
| 53 | \( 1 + 12.6T + 53T^{2} \) |
| 59 | \( 1 + 7.16T + 59T^{2} \) |
| 61 | \( 1 + 14.2T + 61T^{2} \) |
| 67 | \( 1 - 12.8T + 67T^{2} \) |
| 71 | \( 1 - 7.16T + 71T^{2} \) |
| 73 | \( 1 - 1.57T + 73T^{2} \) |
| 79 | \( 1 + 2.34T + 79T^{2} \) |
| 83 | \( 1 - 8.93T + 83T^{2} \) |
| 89 | \( 1 + 6.61T + 89T^{2} \) |
| 97 | \( 1 + 4.67T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.973622984523462638074016155867, −7.40728983609122180611410909709, −6.59579304459871898149009770989, −6.16378827340296966041404400155, −4.88617392295493595034071342370, −4.26067725285184497186197222997, −3.61309332568759226894914227778, −3.14230627319726528636977767536, −1.67003482802193018964180309918, −0.53862356822311387795333880186,
0.53862356822311387795333880186, 1.67003482802193018964180309918, 3.14230627319726528636977767536, 3.61309332568759226894914227778, 4.26067725285184497186197222997, 4.88617392295493595034071342370, 6.16378827340296966041404400155, 6.59579304459871898149009770989, 7.40728983609122180611410909709, 7.973622984523462638074016155867