Properties

Label 2-6552-1.1-c1-0-8
Degree $2$
Conductor $6552$
Sign $1$
Analytic cond. $52.3179$
Root an. cond. $7.23311$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.16·5-s − 7-s + 4.71·11-s + 13-s + 0.450·17-s − 0.103·19-s − 4.42·23-s + 12.3·25-s − 1.89·29-s + 2.55·31-s + 4.16·35-s − 0.450·37-s − 4.26·41-s + 4.42·43-s − 8.61·47-s + 49-s − 12.6·53-s − 19.6·55-s − 7.16·59-s − 14.2·61-s − 4.16·65-s + 12.8·67-s + 7.16·71-s + 1.57·73-s − 4.71·77-s − 2.34·79-s + 8.93·83-s + ⋯
L(s)  = 1  − 1.86·5-s − 0.377·7-s + 1.42·11-s + 0.277·13-s + 0.109·17-s − 0.0236·19-s − 0.923·23-s + 2.46·25-s − 0.352·29-s + 0.458·31-s + 0.703·35-s − 0.0740·37-s − 0.666·41-s + 0.675·43-s − 1.25·47-s + 0.142·49-s − 1.74·53-s − 2.64·55-s − 0.933·59-s − 1.81·61-s − 0.516·65-s + 1.57·67-s + 0.850·71-s + 0.183·73-s − 0.537·77-s − 0.264·79-s + 0.981·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6552\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(52.3179\)
Root analytic conductor: \(7.23311\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6552,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.048325457\)
\(L(\frac12)\) \(\approx\) \(1.048325457\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + 4.16T + 5T^{2} \)
11 \( 1 - 4.71T + 11T^{2} \)
17 \( 1 - 0.450T + 17T^{2} \)
19 \( 1 + 0.103T + 19T^{2} \)
23 \( 1 + 4.42T + 23T^{2} \)
29 \( 1 + 1.89T + 29T^{2} \)
31 \( 1 - 2.55T + 31T^{2} \)
37 \( 1 + 0.450T + 37T^{2} \)
41 \( 1 + 4.26T + 41T^{2} \)
43 \( 1 - 4.42T + 43T^{2} \)
47 \( 1 + 8.61T + 47T^{2} \)
53 \( 1 + 12.6T + 53T^{2} \)
59 \( 1 + 7.16T + 59T^{2} \)
61 \( 1 + 14.2T + 61T^{2} \)
67 \( 1 - 12.8T + 67T^{2} \)
71 \( 1 - 7.16T + 71T^{2} \)
73 \( 1 - 1.57T + 73T^{2} \)
79 \( 1 + 2.34T + 79T^{2} \)
83 \( 1 - 8.93T + 83T^{2} \)
89 \( 1 + 6.61T + 89T^{2} \)
97 \( 1 + 4.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.973622984523462638074016155867, −7.40728983609122180611410909709, −6.59579304459871898149009770989, −6.16378827340296966041404400155, −4.88617392295493595034071342370, −4.26067725285184497186197222997, −3.61309332568759226894914227778, −3.14230627319726528636977767536, −1.67003482802193018964180309918, −0.53862356822311387795333880186, 0.53862356822311387795333880186, 1.67003482802193018964180309918, 3.14230627319726528636977767536, 3.61309332568759226894914227778, 4.26067725285184497186197222997, 4.88617392295493595034071342370, 6.16378827340296966041404400155, 6.59579304459871898149009770989, 7.40728983609122180611410909709, 7.973622984523462638074016155867

Graph of the $Z$-function along the critical line