Properties

Label 2-6552-1.1-c1-0-4
Degree $2$
Conductor $6552$
Sign $1$
Analytic cond. $52.3179$
Root an. cond. $7.23311$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.69·5-s − 7-s − 5.84·11-s + 13-s − 0.964·17-s + 6.58·19-s + 7.18·23-s − 2.11·25-s − 8.58·29-s − 5.54·31-s + 1.69·35-s + 0.964·37-s + 4.88·41-s − 7.18·43-s − 4.73·47-s + 49-s − 13.0·53-s + 9.93·55-s + 4.81·59-s + 13.2·61-s − 1.69·65-s − 10.3·67-s − 4.81·71-s + 13.1·73-s + 5.84·77-s − 7.61·79-s + 0.133·83-s + ⋯
L(s)  = 1  − 0.759·5-s − 0.377·7-s − 1.76·11-s + 0.277·13-s − 0.233·17-s + 1.51·19-s + 1.49·23-s − 0.422·25-s − 1.59·29-s − 0.996·31-s + 0.287·35-s + 0.158·37-s + 0.762·41-s − 1.09·43-s − 0.690·47-s + 0.142·49-s − 1.78·53-s + 1.33·55-s + 0.626·59-s + 1.69·61-s − 0.210·65-s − 1.26·67-s − 0.571·71-s + 1.54·73-s + 0.666·77-s − 0.857·79-s + 0.0146·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6552\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(52.3179\)
Root analytic conductor: \(7.23311\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6552,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9451884071\)
\(L(\frac12)\) \(\approx\) \(0.9451884071\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + 1.69T + 5T^{2} \)
11 \( 1 + 5.84T + 11T^{2} \)
17 \( 1 + 0.964T + 17T^{2} \)
19 \( 1 - 6.58T + 19T^{2} \)
23 \( 1 - 7.18T + 23T^{2} \)
29 \( 1 + 8.58T + 29T^{2} \)
31 \( 1 + 5.54T + 31T^{2} \)
37 \( 1 - 0.964T + 37T^{2} \)
41 \( 1 - 4.88T + 41T^{2} \)
43 \( 1 + 7.18T + 43T^{2} \)
47 \( 1 + 4.73T + 47T^{2} \)
53 \( 1 + 13.0T + 53T^{2} \)
59 \( 1 - 4.81T + 59T^{2} \)
61 \( 1 - 13.2T + 61T^{2} \)
67 \( 1 + 10.3T + 67T^{2} \)
71 \( 1 + 4.81T + 71T^{2} \)
73 \( 1 - 13.1T + 73T^{2} \)
79 \( 1 + 7.61T + 79T^{2} \)
83 \( 1 - 0.133T + 83T^{2} \)
89 \( 1 + 2.73T + 89T^{2} \)
97 \( 1 + 5.01T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84946358774104349084213974621, −7.43137259021008309587246225829, −6.81225718654741009568026679344, −5.60370689816635661332419381733, −5.32561875902785677235372442791, −4.41007977799196912567937913972, −3.38306226246001116569496452875, −3.02171528193303923173612529326, −1.85344667876622628203397727141, −0.48470515312216258116657243421, 0.48470515312216258116657243421, 1.85344667876622628203397727141, 3.02171528193303923173612529326, 3.38306226246001116569496452875, 4.41007977799196912567937913972, 5.32561875902785677235372442791, 5.60370689816635661332419381733, 6.81225718654741009568026679344, 7.43137259021008309587246225829, 7.84946358774104349084213974621

Graph of the $Z$-function along the critical line