Properties

Label 2-6552-1.1-c1-0-24
Degree $2$
Conductor $6552$
Sign $1$
Analytic cond. $52.3179$
Root an. cond. $7.23311$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 7-s + 2·11-s − 13-s + 6·17-s + 4·19-s + 2·23-s − 25-s − 4·31-s − 2·35-s + 2·37-s − 2·41-s − 4·43-s + 49-s + 12·53-s − 4·55-s + 6·61-s + 2·65-s − 12·67-s + 2·71-s − 2·73-s + 2·77-s + 4·83-s − 12·85-s − 2·89-s − 91-s − 8·95-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.377·7-s + 0.603·11-s − 0.277·13-s + 1.45·17-s + 0.917·19-s + 0.417·23-s − 1/5·25-s − 0.718·31-s − 0.338·35-s + 0.328·37-s − 0.312·41-s − 0.609·43-s + 1/7·49-s + 1.64·53-s − 0.539·55-s + 0.768·61-s + 0.248·65-s − 1.46·67-s + 0.237·71-s − 0.234·73-s + 0.227·77-s + 0.439·83-s − 1.30·85-s − 0.211·89-s − 0.104·91-s − 0.820·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6552\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(52.3179\)
Root analytic conductor: \(7.23311\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6552,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.846109562\)
\(L(\frac12)\) \(\approx\) \(1.846109562\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 2 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87972328959577902547586924639, −7.42232806638514620547046733388, −6.79842733527957873757569199492, −5.72146695164700154998523417106, −5.22205350947000092335589302969, −4.28559238960345030508806089721, −3.62987732862014125330273712536, −2.94719305713936828169314848733, −1.68443893879881686171875646777, −0.73319160908086279268180874527, 0.73319160908086279268180874527, 1.68443893879881686171875646777, 2.94719305713936828169314848733, 3.62987732862014125330273712536, 4.28559238960345030508806089721, 5.22205350947000092335589302969, 5.72146695164700154998523417106, 6.79842733527957873757569199492, 7.42232806638514620547046733388, 7.87972328959577902547586924639

Graph of the $Z$-function along the critical line