L(s) = 1 | + 0.414·2-s − 1.82·4-s + 4.82·7-s − 1.58·8-s − 0.828·11-s + 2·13-s + 1.99·14-s + 3·16-s + 2.82·17-s − 4.82·19-s − 0.343·22-s − 3.17·23-s + 0.828·26-s − 8.82·28-s − 29-s + 6.48·31-s + 4.41·32-s + 1.17·34-s + 8.48·37-s − 1.99·38-s + 6·41-s + 6·43-s + 1.51·44-s − 1.31·46-s − 11.6·47-s + 16.3·49-s − 3.65·52-s + ⋯ |
L(s) = 1 | + 0.292·2-s − 0.914·4-s + 1.82·7-s − 0.560·8-s − 0.249·11-s + 0.554·13-s + 0.534·14-s + 0.750·16-s + 0.685·17-s − 1.10·19-s − 0.0731·22-s − 0.661·23-s + 0.162·26-s − 1.66·28-s − 0.185·29-s + 1.16·31-s + 0.780·32-s + 0.200·34-s + 1.39·37-s − 0.324·38-s + 0.937·41-s + 0.914·43-s + 0.228·44-s − 0.193·46-s − 1.70·47-s + 2.33·49-s − 0.507·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.326604423\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.326604423\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 - 0.414T + 2T^{2} \) |
| 7 | \( 1 - 4.82T + 7T^{2} \) |
| 11 | \( 1 + 0.828T + 11T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 - 2.82T + 17T^{2} \) |
| 19 | \( 1 + 4.82T + 19T^{2} \) |
| 23 | \( 1 + 3.17T + 23T^{2} \) |
| 31 | \( 1 - 6.48T + 31T^{2} \) |
| 37 | \( 1 - 8.48T + 37T^{2} \) |
| 41 | \( 1 - 6T + 41T^{2} \) |
| 43 | \( 1 - 6T + 43T^{2} \) |
| 47 | \( 1 + 11.6T + 47T^{2} \) |
| 53 | \( 1 + 3.65T + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 3.65T + 61T^{2} \) |
| 67 | \( 1 + 6.48T + 67T^{2} \) |
| 71 | \( 1 - 15.3T + 71T^{2} \) |
| 73 | \( 1 + 8.48T + 73T^{2} \) |
| 79 | \( 1 + 2.48T + 79T^{2} \) |
| 83 | \( 1 - 7.17T + 83T^{2} \) |
| 89 | \( 1 - 7.65T + 89T^{2} \) |
| 97 | \( 1 - 12.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.989564771931177069470950026661, −7.71553176950560475814563697229, −6.35163232845224554527227418260, −5.78638216961660261835052815271, −4.98324011054116642298086614234, −4.45819293555289265652110692436, −3.91777259507565956384099566673, −2.77897074812734334678037981653, −1.74682145759572670183904958864, −0.801284393212260615437203964955,
0.801284393212260615437203964955, 1.74682145759572670183904958864, 2.77897074812734334678037981653, 3.91777259507565956384099566673, 4.45819293555289265652110692436, 4.98324011054116642298086614234, 5.78638216961660261835052815271, 6.35163232845224554527227418260, 7.71553176950560475814563697229, 7.989564771931177069470950026661