Properties

Label 2-6525-1.1-c1-0-182
Degree $2$
Conductor $6525$
Sign $-1$
Analytic cond. $52.1023$
Root an. cond. $7.21819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.517·2-s − 1.73·4-s + 2.44·7-s − 1.93·8-s + 1.26·11-s + 1.79·13-s + 1.26·14-s + 2.46·16-s + 1.41·17-s − 3.26·19-s + 0.656·22-s − 6.31·23-s + 0.928·26-s − 4.24·28-s − 29-s − 8.73·31-s + 5.13·32-s + 0.732·34-s − 9.14·37-s − 1.69·38-s + 6.92·41-s − 9.14·43-s − 2.19·44-s − 3.26·46-s + 1.41·47-s − 1.00·49-s − 3.10·52-s + ⋯
L(s)  = 1  + 0.366·2-s − 0.866·4-s + 0.925·7-s − 0.683·8-s + 0.382·11-s + 0.497·13-s + 0.338·14-s + 0.616·16-s + 0.342·17-s − 0.749·19-s + 0.139·22-s − 1.31·23-s + 0.182·26-s − 0.801·28-s − 0.185·29-s − 1.56·31-s + 0.908·32-s + 0.125·34-s − 1.50·37-s − 0.274·38-s + 1.08·41-s − 1.39·43-s − 0.331·44-s − 0.481·46-s + 0.206·47-s − 0.142·49-s − 0.430·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6525\)    =    \(3^{2} \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(52.1023\)
Root analytic conductor: \(7.21819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6525,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 - 0.517T + 2T^{2} \)
7 \( 1 - 2.44T + 7T^{2} \)
11 \( 1 - 1.26T + 11T^{2} \)
13 \( 1 - 1.79T + 13T^{2} \)
17 \( 1 - 1.41T + 17T^{2} \)
19 \( 1 + 3.26T + 19T^{2} \)
23 \( 1 + 6.31T + 23T^{2} \)
31 \( 1 + 8.73T + 31T^{2} \)
37 \( 1 + 9.14T + 37T^{2} \)
41 \( 1 - 6.92T + 41T^{2} \)
43 \( 1 + 9.14T + 43T^{2} \)
47 \( 1 - 1.41T + 47T^{2} \)
53 \( 1 - 5.93T + 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 - 2.92T + 61T^{2} \)
67 \( 1 + 4.24T + 67T^{2} \)
71 \( 1 + 3.46T + 71T^{2} \)
73 \( 1 - 7.34T + 73T^{2} \)
79 \( 1 + 4.19T + 79T^{2} \)
83 \( 1 - 10.1T + 83T^{2} \)
89 \( 1 + 10.3T + 89T^{2} \)
97 \( 1 - 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80789758412847980233189520334, −6.93425240330332857408487083061, −6.03067613461410320420102813341, −5.44192981413813156101011503834, −4.79516318428975844849793374349, −3.91466585463501622693075913096, −3.60684778416512167519656887001, −2.22519095817124461056364015185, −1.35060707494952085711132267385, 0, 1.35060707494952085711132267385, 2.22519095817124461056364015185, 3.60684778416512167519656887001, 3.91466585463501622693075913096, 4.79516318428975844849793374349, 5.44192981413813156101011503834, 6.03067613461410320420102813341, 6.93425240330332857408487083061, 7.80789758412847980233189520334

Graph of the $Z$-function along the critical line