Properties

Label 2-6525-1.1-c1-0-133
Degree $2$
Conductor $6525$
Sign $-1$
Analytic cond. $52.1023$
Root an. cond. $7.21819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.77·2-s + 1.16·4-s + 2.84·7-s + 1.49·8-s − 5.35·11-s + 2.50·13-s − 5.06·14-s − 4.97·16-s − 6.50·17-s + 2.25·19-s + 9.52·22-s + 0.355·23-s − 4.45·26-s + 3.31·28-s + 29-s + 5.45·31-s + 5.86·32-s + 11.5·34-s + 2.00·37-s − 4.00·38-s + 5.37·41-s − 12.8·43-s − 6.22·44-s − 0.632·46-s + 4.01·47-s + 1.11·49-s + 2.91·52-s + ⋯
L(s)  = 1  − 1.25·2-s + 0.580·4-s + 1.07·7-s + 0.526·8-s − 1.61·11-s + 0.695·13-s − 1.35·14-s − 1.24·16-s − 1.57·17-s + 0.517·19-s + 2.03·22-s + 0.0742·23-s − 0.874·26-s + 0.625·28-s + 0.185·29-s + 0.980·31-s + 1.03·32-s + 1.98·34-s + 0.329·37-s − 0.650·38-s + 0.839·41-s − 1.96·43-s − 0.938·44-s − 0.0933·46-s + 0.585·47-s + 0.159·49-s + 0.403·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6525\)    =    \(3^{2} \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(52.1023\)
Root analytic conductor: \(7.21819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6525,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 1.77T + 2T^{2} \)
7 \( 1 - 2.84T + 7T^{2} \)
11 \( 1 + 5.35T + 11T^{2} \)
13 \( 1 - 2.50T + 13T^{2} \)
17 \( 1 + 6.50T + 17T^{2} \)
19 \( 1 - 2.25T + 19T^{2} \)
23 \( 1 - 0.355T + 23T^{2} \)
31 \( 1 - 5.45T + 31T^{2} \)
37 \( 1 - 2.00T + 37T^{2} \)
41 \( 1 - 5.37T + 41T^{2} \)
43 \( 1 + 12.8T + 43T^{2} \)
47 \( 1 - 4.01T + 47T^{2} \)
53 \( 1 - 3.42T + 53T^{2} \)
59 \( 1 - 4.76T + 59T^{2} \)
61 \( 1 + 4.29T + 61T^{2} \)
67 \( 1 - 1.09T + 67T^{2} \)
71 \( 1 + 5.21T + 71T^{2} \)
73 \( 1 - 6.78T + 73T^{2} \)
79 \( 1 + 1.84T + 79T^{2} \)
83 \( 1 + 13.7T + 83T^{2} \)
89 \( 1 - 2.56T + 89T^{2} \)
97 \( 1 + 2.73T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.971275094984447738324369370344, −7.23375755259683566669691040359, −6.51356426228232547386768188690, −5.45506748597904478943293718413, −4.80447868795655778519996817240, −4.18669783575102175977498377399, −2.80933060172415287717517533401, −2.06484410897063522977938067114, −1.14438197433490793176641561283, 0, 1.14438197433490793176641561283, 2.06484410897063522977938067114, 2.80933060172415287717517533401, 4.18669783575102175977498377399, 4.80447868795655778519996817240, 5.45506748597904478943293718413, 6.51356426228232547386768188690, 7.23375755259683566669691040359, 7.971275094984447738324369370344

Graph of the $Z$-function along the critical line