Properties

Label 2-6525-1.1-c1-0-104
Degree $2$
Conductor $6525$
Sign $-1$
Analytic cond. $52.1023$
Root an. cond. $7.21819$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.18·2-s + 2.75·4-s − 4.62·7-s − 1.64·8-s + 2.53·11-s + 2.08·13-s + 10.0·14-s − 1.91·16-s − 0.481·17-s + 4.25·19-s − 5.52·22-s − 5.22·23-s − 4.55·26-s − 12.7·28-s + 29-s + 0.0174·31-s + 7.47·32-s + 1.05·34-s + 7.52·37-s − 9.28·38-s − 5.88·41-s − 4.91·43-s + 6.97·44-s + 11.3·46-s − 7.27·47-s + 14.3·49-s + 5.75·52-s + ⋯
L(s)  = 1  − 1.54·2-s + 1.37·4-s − 1.74·7-s − 0.582·8-s + 0.763·11-s + 0.579·13-s + 2.69·14-s − 0.479·16-s − 0.116·17-s + 0.976·19-s − 1.17·22-s − 1.08·23-s − 0.893·26-s − 2.40·28-s + 0.185·29-s + 0.00313·31-s + 1.32·32-s + 0.180·34-s + 1.23·37-s − 1.50·38-s − 0.919·41-s − 0.749·43-s + 1.05·44-s + 1.67·46-s − 1.06·47-s + 2.05·49-s + 0.798·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6525 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6525\)    =    \(3^{2} \cdot 5^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(52.1023\)
Root analytic conductor: \(7.21819\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6525,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
29 \( 1 - T \)
good2 \( 1 + 2.18T + 2T^{2} \)
7 \( 1 + 4.62T + 7T^{2} \)
11 \( 1 - 2.53T + 11T^{2} \)
13 \( 1 - 2.08T + 13T^{2} \)
17 \( 1 + 0.481T + 17T^{2} \)
19 \( 1 - 4.25T + 19T^{2} \)
23 \( 1 + 5.22T + 23T^{2} \)
31 \( 1 - 0.0174T + 31T^{2} \)
37 \( 1 - 7.52T + 37T^{2} \)
41 \( 1 + 5.88T + 41T^{2} \)
43 \( 1 + 4.91T + 43T^{2} \)
47 \( 1 + 7.27T + 47T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 + 2.12T + 59T^{2} \)
61 \( 1 + 2.79T + 61T^{2} \)
67 \( 1 - 5.03T + 67T^{2} \)
71 \( 1 + 8.56T + 71T^{2} \)
73 \( 1 - 1.59T + 73T^{2} \)
79 \( 1 - 11.6T + 79T^{2} \)
83 \( 1 - 4.69T + 83T^{2} \)
89 \( 1 - 14.6T + 89T^{2} \)
97 \( 1 + 0.438T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80196688871341799313587000744, −7.05021462862696119195030109830, −6.34771985663206283435171423749, −6.10929055805573924044056627915, −4.76646549018961584653092210045, −3.67736421132661765028341254671, −3.11773943872885147138048298139, −2.00242099554618918549460723305, −1.00044873542233122847911848721, 0, 1.00044873542233122847911848721, 2.00242099554618918549460723305, 3.11773943872885147138048298139, 3.67736421132661765028341254671, 4.76646549018961584653092210045, 6.10929055805573924044056627915, 6.34771985663206283435171423749, 7.05021462862696119195030109830, 7.80196688871341799313587000744

Graph of the $Z$-function along the critical line